K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2016

61 nhe bạn

14 tháng 8 2016

Gọi số tự nhiên đó là a theo đề ta có:

a:2 dư 1 => a=2k+1

a:3 dư 1 => a=3m+1

a:4 dư 1 => a=4n+1

a:5 dư 1 => a=5b+1

=> a=2k+1=3m+1=4n+1=5b+1

=> a+59=2k+60=3m+60=4n+60=5b+60

=> a+59=2(k+30)=3(m+20)=4(n+15)=5(b+12)

=> a+59 chia hết cho 2;3;4 và 5 

a+59 = BCNN(2;3;4;5)=60.2=120

a+59=120

a=61

23 tháng 9 2015

bài 1 số cần tìm là 1010

bài 2 số cần tìm là 9997

4 tháng 1 2023

b.Gọi số cần tìm là a.

Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3

          a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5            và a là nhỏ nhất

          a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7

\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).

\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.

\(\Rightarrow\) a + 2 = 105 

\(\Rightarrow\) a = 103

20 tháng 1 2023

Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.batngo

5 tháng 10 2015

1.Tìm số tự nhiên nhỏ nhất khác 0 mà chia hết cho cả 2,3,4,5 và 6 là số 60

5 tháng 6 2021

a) Tìm số tự nhiên nhỏ nhất sao cho khi chia số đó cho 3,4,5 đều dư 1và chia cho 7 thì không dư

Gọi số đó là x

Ta có: x - 1 ∈ BC(3; 4; 5) = {0; 60; 120; 180; 240; 300; ...}

=> x ∈ {1; 61; 121; 181; 241; 301 ...}

Vì x chia hết cho 7 => x = 301

5 tháng 6 2021

b) Tìm số tự nhiên a nhỏ nhất sao cho a chia cho 2 dư 1,chia cho 5 dư 1,chia cho 7 dư 3,chia hết cho 9

Ta có: a chia 2 dư 1

             a chia 5 dư 1

             a chia 7 dư 3

             a chia hết cho 9

=> a chia hết cho 3; 6; 9; 10

Ta có: 2 + 1 = 3

            6 + 1 = 6

            7 + 3 = 10

=> a nhỏ nhất

=> a thuộc BCNN(3; 6; 9; 10)

Ta có: 3 = 3

            6 = 2 . 3

            9 = 3^2

            10 = 2 . 5

=> BCNN(3; 6; 9; 10) = 3^2 . 2 . 5 = 90

=> a = 90

2 tháng 3 2020

Bài 2: 

Gọi số đó là n

Theo bài ra ta có:

\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)

\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)

\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)

\(\Rightarrow n+27⋮11;4;9\)

Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)

\(\Rightarrow n=836-27=809\)

Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\) 

25 tháng 3 2018

8 tháng 5 2017

a, Gọi số phải tìm là a, aN*

Vì a chia cho 6, 7, 9 được số dư lần lượt là 2, 3, 5 nên (a+4) chia hết cho 6,7,9.

Suy ra (a+4) ∈ BC(6,7,9)

Mà a là số tự nhiên nhỏ nhất

Suy ra (a+4) = BC(6,7,9) =  3 2 . 2 . 7 = 126 => a+4 = 126 => a = 122

Vậy số phải tìm là 126

b, Gọi số phải tìm là a, aN*

a chia  cho 17, 25 được các số dư theo thứ tự là 8 và 16.

nên (a+7) chia hết cho 8; 16.

Suy ra (a+7)BC(8;16)

Suy ra BCNN(8;16) = 16 => a+7B(16) = 16k (kN).

Vậy số phải tìm có dạng 16k – 7

31 tháng 12 2021

61 nhé 

Vì (3×4×5)+1=61

16 tháng 5 2015

Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.

Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).

n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.

n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.

Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3

Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4

Vậy n = 23.34 = 648

            Số cần tìm là 648.