K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

toán 12 nha

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

6 tháng 8 2017

a,A=12

b,B=8

c,C=-3

6 tháng 8 2017
A= (x^2-4x+4)+3 A= (x-2)^2>= 3 Vậy GTNN của A=3 <=> x=2 B=x^2+8x B=(x^2+8x+16)-16 B=(x+4)^2-16>= -16 Vậy GTNN của A=-16 <=> x--4 C=-2x^2+8x-15 C=-2(x^2-4x+15/2) C=-2(x^2-4x+4)+7/2 C=-2(x-2)^2+7/2 Vậy GTNN của C= 7/2 <=> x=2
11 tháng 9 2021

\(A=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\ge-7\)

Dấu \("="\Leftrightarrow x=2\)

\(B=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=4\left(x^2-2x+1\right)-4=4\left(x-1\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x=1\)

\(D=\dfrac{1}{-\left(x^2+2x+1\right)+6}=\dfrac{1}{-\left(x+1\right)^2+6}\ge\dfrac{1}{6}\)

Dấu \("="\Leftrightarrow x=-1\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

1.

$A=2x^2-8x+1=2(x^2-4x+4)-7=2(x-2)^2-7$

Vì $(x-2)^2\geq 0$ với mọi $x\in\mathbb{R}$

$\Rightarrow A\geq 2.0-7=-7$

Vậy $A_{\min}=-7$ khi $x-2=0\Leftrightarrow x=2$

2.

$B=x^2+3x+2=(x^2+3x+1,5^2)-0,25=(x+1,5)^2-0,25\geq 0-0,25=-0,25$

Vậy $B_{\min}=-0,25$ khi $x=-1,5$

3.

$C=4x^2-8x=(4x^2-8x+4)-4=(2x-2)^2-4\geq 0-4=-4$

Vậy $C_{\min}=-4$ khi $2x-2=0\Leftrightarrow x=1$

4. Để $D_{\min}$ thì $5-x^2-2x$ là số thực âm lớn nhất

Mà không tồn tại số thực âm lớn nhất nên không tồn tại $x$ để $D_{\min}$

10 tháng 9 2021

A\(=2x^2-8x+1\)

=2x(x-4)+1≥1

Min A=1 ⇔x=4

B=\(x^2+3x+2\)

\(=\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}\right)-\dfrac{1}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)\(-\dfrac{1}{4}\)

Min B=-1/4⇔x=-3/2

10 tháng 9 2021

C=\(4x^2-8x\)

=\(\left(\left(2x\right)^2-2x.4+16\right)-16\)

=(2x-4)^2 -16≥-16

Min C=-16 ⇔x=2

28 tháng 8 2019

Cả tử và mẫu đồng bậc:)) Em thử nha, ko chắc..

Với y = 0 thì x khác 0 và \(P=\frac{8x^2}{x^2}=8\)

Với y khác 0, chia cả tử và mẫu của P cho y2. Ta có:

\(P=\frac{8\left(\frac{x}{y}\right)^2+6.\frac{x}{y}}{\left(\frac{x}{y}\right)^2+1}\). Đặt \(\frac{x}{y}=t\)

Thế thì: \(P=\frac{8t^2+6t}{t^2+1}\)

Bí.

25 tháng 2 2020

biểu thức đã cho (=) (8-P)x2 + 6yx -Py2=0

tìm denta ra thì đc như sau: y2(-P2+8P+9) >=0  =) -P2+8P+9 >=0 

phần còn lại bấm máy tính ra kết quả là   -1=<P=<9

Min=-1  và Max=9 

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))