K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

24^1917 + 14^1917 
=(24+14) (lương liên hợp) 
=38(lương liên hợp) 
Chia hết cho 19 

a có: 
A= 2^9 +2^99=2^2(2^7 + 2^97)=4((2^7 + 2^97) đồng dư 0 (mod 4). 
2^5 = 32 đồng 7 (mod 25) 
=> 2^10 đồng dư 7^2 (mod 25) đồng dư -1(mod 25). 
mặt khác: 
A= 2^9 +2^99 =2^9(1+2^90) 
mà (1+2^90) = 1 + (2^10)^9 đồng dư 1 -1=0 (mod 25) 
=> 2^9 +2^99 đồng dư 0 (mod 25) 
BSCNN của 4 và 25 =100 
=> A đồng dư 0 (mod 100) 
hay A chia hết cho 100. 

22226 đồng dư 1 (mod7)         
và 5555=6x925+5
=> 22225555 đồng dư 2222 5 (mod7)
mà 22225 = 2222 2x 22222 x 2222 
22222 đồng dư 2 (mod 7) => 2222 5  đồng dư 2x2x2222 (mod 7)
=> 22225555 đồng dư với 5 (mod 7)
Tương tự có 55552222 đông dư 2 (mod 7)
Vậy => 22225555+55552222 đồng dư 5+2=7 (mod 7)
=> 22225555+55552222 đồng dư 0 (mod7)
=>đpcm

25 tháng 12 2016

de qua di

4 tháng 8 2015

  2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 

5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 

vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

30 tháng 12 2016

viết dấu đồng quy ở đâu zậy bn

13 tháng 8 2015

a, Ta có : 222 ≡ 1(mod 13) nên 222^333 ≡ 1 (mod 13) 
Và 333^2 ≡ -1 (mod 13) nên 333^222 ≡ -1 (mod 13) 
Cộng lại ta có: 
222^333 + 333^222 ≡ 0 (mod 13) đpcm 

b, 2222 ≡ 3 (mod 7) ; 3³ ≡ -1 (mod 7) ; chú ý: 5555 = 3*1851 + 2 
=> 2222^5555 ≡ 3^5555 ≡ (3³)^1851.3² ≡ (-1)^1851.9 ≡ -9 ≡ -2 ≡ 5 (mod 7) 
5555 ≡ 4 (mod 7) ; 4³ ≡ 1 (mod 7) ; 2222 = 3*740 + 2 
=> 5555^2222 ≡ 4^2222 ≡ (4³)^740.4² ≡ (1).16 ≡ 2 (mod 7) 
vậy: 2222^5555 + 5555^2222 ≡ 5+2 ≡ 0 (mod 7) => đpcm 

( tick đúng cho mink nha)

12 tháng 2 2016

Là điều phải chứng minh đó

24 tháng 4 2018

Ta có 2222 + 4 \(⋮\) 7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7)

5555 - 4 \(⋮\)7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7)

=> 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7)

Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222

= (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1)

Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2)

Nên (- 4)5555 + 42222 ≡ 0 (mod 7)

Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.

6 tháng 1 2015

Ta có: 2222+4 chia hết cho 7=>2222=-4(mod 7)=>22225555 = (-4)5555 (mod 7)

          5555-4 chia hết cho 7 => 5555=4(mod 7)=>55552222 =42222 (mod 7)

=>22225555 =55552222  = (-4)5555 +42222  (mod 7)

Mà 42222  =(-4)2222 => (-4)5555 +42222 = (-4)2222  + 43333 x 42222 

              =(-4)2222 x 43333 - (-4)2222 = (-4)2222(43333 -1 )=43 -1(mod 7) (1)

Ta lại có: 43 =1(mod 7)=>43 -1=63 chia hết cho 7 =>43 -1=0(mod 7) (2)

Nên (-4)5555 +42222 = 0(mod 7)

Từ (1) và (2) =>22225555 +55552222  chia hết cho 7

21 tháng 1 2017

CM:1/2.3/4.5/6.....99/100<1/10

18 tháng 11 2018

ta có : \(2222\equiv3\)( mod 7 )  \(2222\equiv-4\) ( mod 7 ) ; 

            \(5555\equiv4\) ( mod 7 )

\(\Rightarrow\left(2222^{5555}+5555^{2222}\right)\equiv\left[\left(-4\right)^{5555}+4^{2222}\right]\) ( mod 7 )

\(\Rightarrow\left(2222^{5555}+5555^{2222}\right)\equiv-4^{2222}\left(4^{3333}-1\right)\) ( mod 7 )

Lại có : \(4^{3333}=\left(4^3\right)^{1111}=64^{1111}\) mà \(64\equiv1\) ( mod 7 ) nên \(4^{3333}\equiv1\) ( mod 7 )

\(\Rightarrow4^{3333}-1\equiv0\) ( mod 7 ) \(\Rightarrow-4^{2222}\left(4^{3333}-1\right)\equiv0\) ( mod 7 )

hay \(\left(2222^{5555}+5555^{2222}\right)⋮7\)

2222555522225555+ 5555222255552222 chia hết cho 7

Ta có : 2222 ≡ 3 (mod 7) (1)

⇒ 2222422224 ≡ 3434 (mod 7)

⇒ 2222422224 ≡ 81 (mod 7)

       Mà 81 ≡ 4 (mod 7)

⇒ 2222422224 ≡ 4 (mod 7) (2)

Nhân (1) với (2) ta được:

⇒ 2222422224 . 2222 ≡ 4.3 (mod 7)

⇒ 2222522225 ≡ 12 (mod 7) ≡ 5 (mod 7)

⇒ 2222555522225555 ≡ 5111151111 (mod 7) (3)

Tương tự như vế trên ta được: 

5555222255552222≡ 2111121111 (mod 7) (4)

Cộng vế (3) và (4) ta có:

2222555522225555+ 5555222255552222 ≡ 2111121111 + 5111151111 ( mod 7 ) (5)

Mặt khác: 2111121111 + 5111151111 ≡ 2+5 ( mod 7 ) ≡ 7 ( mod 7 ) ≡ 0 ( mod 7 ) (6)

Từ (5) ; (6) ⇒ 2222555522225555+ 5555222255552222≡ 0 ( mod 7 )

                 ⇒ 2222555522225555+ 5555222255552222 chia hết cho 7 (đccm)

30 tháng 10 2015

ta có:

2222=7.318-4, do đó 2222=-4(mod7)

5555=7.793+4,do đó 5555 = 4(mod7)

=>2222^5555+5555^2222=(-4)^5555+4^2222(mod7)

mà (-4)^5555+4^2222=-4^2222(4^3333-1)=-4^2222[(4^3)^1111-1]=-4^2222(64^1111-1)

lại có:64=1(mod7)  do đó 64^1111=1(mod7)

=>64^1111-1=1-1(mod7)

hay 64^1111-1 chia hết cho 7

vậy 2222^5555+5555^2222 chia hết cho 7(d9pcm)

liikke nhé bn!