K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2018

Ta có 2222 + 4 \(⋮\) 7 => 2222 ≡ - 4 (mod 7) => 22225555 ≡ (- 4)5555(mod 7)

5555 - 4 \(⋮\)7 => 5555 ≡ 4 (mod 7) => 55552222 ≡ 42222 (mod 7)

=> 22225555 + 55552222 ≡ (- 4)5555 + 42222 (mod 7)

Mà 42222 = (-4)2222 => (- 4)5555 + 42222 = (-4)2222. 43333 + 42222

= (-4)2222. 43333 - (- 4)2222 = (-4)2222(43333 - 1) ≡ (43) - 1(mod 7) (1)

Ta lại có : 43 ≡ 1(mod 7) => 43 - 1= 63 7 => 43 - 1 ≡ 0 (mod 7) (2)

Nên (- 4)5555 + 42222 ≡ 0 (mod 7)

Từ (1) và (2) => 22225555 + 55552222 chia hết cho 7.

31 tháng 8 2015

 

4a+3b=7a+7b-3a-4b=7(a+b)-(3a+4b) chia hết cho 7

+ Do 7(a+b) chia hết cho 7. Theo t/c chia hết của 1 tổng (hiệu) để 4a+3b chia hết cho 7 thì (3a+4b) cũng phải chia hết cho 7

=> 3a+4b chia hết cho 7

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

31 tháng 10 2019

Rinu ko lm thì ra chỗ khác mà chơi.

\(a^7-a=a\left(a^6-1\right)=a\left(a^3-1\right)\left(a^3+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

a sẽ có 7 dạng \(7k;7k+1;7k+2;7k+3;7k+4;7k+5;7k+6\)

Dễ CM với \(a=7k;a=7k+1;a=7k+6\) thì \(a^7-a⋮7\)

Với \(a=7k+2\Rightarrow a^2+a+1=49k^2+28k+7k+7⋮7\)

Với \(a=7k+3\Rightarrow a^2-a+1=49k^2+42k+7k+7⋮7\)

Tương tự xét tiếp nha.mik mệt quá r:(

15 tháng 8 2017

a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.

Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)

\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)

b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)

\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)

\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)

15 tháng 8 2017

câu a sai đề, bạn thử bấm máy xem chia hết ko

câu b

16^5 chia 33 dư 1

2^15 chia 33 dư 32

vậy 16^5 + 2^15 chia hết cho 33

   THAM KHẢO!                                                                                                                           555222 + 222555 =222555 + 555555 - (555555 - 555222
= 222555 + 555555 - 555222(555333 - 1) 
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1) 
555333 - 1 = (5553)111 - 1 ⋮⋮ 5553 - 1 
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79) 
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 ⋮⋮ 7 
=> 555333 - 1 chia hết cho 7 (2) 
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)

23 tháng 1 2022

thanks !

9 tháng 12 2018

hình như bạn viết sai đầu bài phải là 57 mới đúng

9 tháng 12 2018

có 7^2016+7^2015+7^2014

=7^2014(7^2+7+1)

=7^2014.57

SUY RA biểu thức trên luôn chia hết cho 57

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{118}\right)⋮57\)

8 tháng 3 2022

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{118}\right)⋮57\)