Cho
Δ∆
ABC vuông ở A, trung tuyến BD. Phân giác của góc BDA và góc BDC lần
lượt cắt AB, BC ở M và N. Biết AB = 8cm, AD = 6cm.
Tính độ dài các đoạn BD, BM.
Chứng minh MN // AC.
Tứ giác MNCA là hình gì? Tính diện tích của tứ giác đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔBDA có
DM là đường phân giác ứng với cạnh AB
nên \(\dfrac{BM}{MA}=\dfrac{BD}{DA}\)(1)
Xét ΔBDC có
DN là đường phân giác ứng với cạnh BC
nên \(\dfrac{BN}{NC}=\dfrac{BD}{DC}\)(2)
Ta có: D là trung điểm của AC(gt)
nên DA=DC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{BM}{MA}=\dfrac{BN}{NC}\)
hay MN//AC(Định lí Ta lét đảo)
c) Xét tứ giác MNCA có MN//AC(cmt)
nên MNCA là hình thang
mà \(\widehat{MAC}=90^0\)
nên MNCA là hình thang vuông
Bài 1:
a: BC=17cm
AH=120/7(cm)
b: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
Suy ra: AH=MN=120/7(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nen \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)
MD là phân giác
=>BD/BM=DA/AM
=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1
=>BD=5cm; DA=5cm
b: Xét ΔMBC cóME là phân giác
nên BE/EC=BM/MC=BM/MA=BD/DA
=>DE//AC
a: DM là phan giác
=>BM/MA=BD/DA
=>5/MA=10/6=5/3
=>MA=3cm
b: ΔBDC có DN là phân giác
nên BN/NC=BD/DC
=>BN/NC=BM/MA
=>MN//AC
chữ hơi xấu mong bạn thông cảm