Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔBDA có
DM là đường phân giác ứng với cạnh AB
nên \(\dfrac{BM}{MA}=\dfrac{BD}{DA}\)(1)
Xét ΔBDC có
DN là đường phân giác ứng với cạnh BC
nên \(\dfrac{BN}{NC}=\dfrac{BD}{DC}\)(2)
Ta có: D là trung điểm của AC(gt)
nên DA=DC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{BM}{MA}=\dfrac{BN}{NC}\)
hay MN//AC(Định lí Ta lét đảo)
c) Xét tứ giác MNCA có MN//AC(cmt)
nên MNCA là hình thang
mà \(\widehat{MAC}=90^0\)
nên MNCA là hình thang vuông
Bài 1:
a: BC=17cm
AH=120/7(cm)
b: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
Suy ra: AH=MN=120/7(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nen \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)
MD là phân giác
=>BD/BM=DA/AM
=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1
=>BD=5cm; DA=5cm
b: Xét ΔMBC cóME là phân giác
nên BE/EC=BM/MC=BM/MA=BD/DA
=>DE//AC
a) Xét ΔABM vuông tại A có:
\(BA^2+AM^2=BM^2\)(Theo Py-ta-go)
=> BM = 10(cm)
Vì MD là tia phân giác của góc BMA nên \(\frac{AM}{BM}=\frac{AD}{BD}\)
=> \(\frac{BD}{BM}=\frac{AD}{AM}=\frac{AD+BD}{BM+AM}=\frac{AB}{10+6}=\frac{8}{16}=\frac{1}{2}\)
=> BD = 1/2.BM = 1/2.10 = 5(cm)
b) Vì ME là tia phân giác của góc BMC nên \(\frac{BM}{MC}=\frac{BE}{EC}\)
Vì BM là trung tuyến của ΔABC nên MA = MC
Lại có \(\frac{BM}{AM}=\frac{BD}{AD}\)
Do đó \(\frac{BD}{AD}=\frac{BE}{EC}=\frac{AM}{BM}=\frac{CM}{BM}\)
=> DE // AC