Cho tam giác ABC nhọn các đường cao BI , CK , điểm M thuộc cạnh BC , gọi D, E
lần lượt là hình chiếu của M trên AB , AC . Gọi D’ là hình chiếu của D trên AC , E’ là hình
chiếu của E trên AB , H là giao điểm của DD’ và EE’ . CMR : K , H , I thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác vuông ADH và tam giác vuông AHB có góc A chung nên đồng dạng => AD/AH = AH/AB => AH2 = AD.AB
cmtt ta cũng có AH2 = AE.AB => AD.AB = AE. AC
Xét tam giác ABE và tam giác ACD có góc A chung và AB/AC = AE/AD (cmt)
=> tg ABE đồng dạng tg ACD (c-g-c) => góc ABE = góc ACD
đến đây bn tự cm tiếp nhé!
a: góc AEH=góc ADH=góc DAE=90 độ
=>AEHD là hình chữ nhật
b: Xét ΔADH vuông tại D và ΔAHB vuông tại H có
góc DAH chung
=>ΔADH đồng dạng với ΔAHB
c: ΔAHC vuông tại H có HE vuông góc AC
nên HE^2=AE*EC
a) \(\Delta ABC\) có MA = MB; NA = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)MN // BC
\(\Rightarrow\)Tứ giác BMNC là hình thang
b) \(\Delta ABC\)có NA = NC; QB = QC
\(\Rightarrow\)NQ // AB; NQ = 1/2 AB
mà MA = 1/2 AB
\(\Rightarrow\)NQ = MA
Tứ giác AMQN có NQ // AM; NQ = AM
\(\Rightarrow\)AMQN là hình bình hành
a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạngvói ΔAHD
c: ΔHAC vuông tại H có HE là đường cao
nên HE^2=AE*EC
a: Xét ΔABD có
AI vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
góc HAI=góc KAI
=>ΔAHI=ΔAKI
=>HI=KI
c: HI=KI
KI<ID
=>HI<ID
rồi từ câu a) là sai đề nhaaaa em ( ko thể chứng minh đc - do AB < AC < BC)