K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Kẻ AH ⊥ BC.

Ta có: EF // BC (gt) ⇒ AH ⊥ EF

Lại có: AE = AF (chứng minh trên)

Vậy đường cao AH là đường trung trực của EF.

Vì B là trung điểm DF và DF // AC nên đường cao kẻ từ đỉnh B của ΔABC là đường trung trực DF.

Vì C là trung điểm DE và DE // AB nên đường cao kẻ từ đỉnh C của ΔABC là đường trung trực của DE.

F A E B C D

(thông cảm chút vì hình xấu :< )

Xét ΔABC và ΔACE, ta có:

∠(ACB) = ∠(CAE) (so le trong, AE // BC)

AC cạnh chung

∠(CAB) = ∠(ACE) (so le trong, CE // AB)

Suy ra: ΔABC = ΔACE (g.c.g)

⇒ AE = BC (1)

Xét ΔABC và ΔABF, ta có:

∠(ABC) = ∠(BAF) (so le trong, AF // BC)

AB cạnh chung

∠(BAC) = ∠(ABF) (so le trong, BF // AC)

Suy ra: ΔABC = ΔBAF (g.c.g)

⇒ AF = BC (2)

Từ (1) và (2) suy ra: AE = AF

Vậy A là trung điểm của EF.

b. Kẻ AH ⊥ BC.

Ta có: EF // BC (gt) ⇒ AH ⊥ EF

Lại có: AE = AF (chứng minh trên)

Vậy đường cao AH là đường trung trực của EF.

Vì B là trung điểm DF và DF // AC nên đường cao kẻ từ đỉnh B của ΔABC là đường trung trực DF.

Vì C là trung điểm DE và DE // AB nên đường cao kẻ từ đỉnh C của ΔABC là đường trung trực của DE.

29 tháng 7 2021

very goodhaha

20 tháng 3 2016

B C A

a: Xét tứ giác BFED có 

ED//BF

FE//BD

Do đó: BFED là hình bình hành

Xét ΔABC có

D là trung điểm của BC

DE//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AC

EF//CB

Do đó: F là trung điểm của AB

Xét ΔCDE và ΔEFA có 

CD=EF

DE=FA

CE=EA

Do đó: ΔCDE=ΔEFA

b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC

Trên tia FE lấy điểm E sao cho E là trung điểm của FK

Xét tứ giác AFCK có 

E là trung điểm của AC

E là trung điểm của FK

Do đó: AFCK là hình bình hành

Suy ra: AF//KC và KC=AF

hay KC//FB và KC=FB

Xét tứ giác BFKC có 

KC//FB

KC=FB

Do đó: BFKC là hình bình hành

Suy ra: FE//BC(ĐPCM)

29 tháng 1 2021

a) Ta có: EF//BC(gt) =>\(\left\{{}\begin{matrix}\text{^EOB = ^OBC (SLT)}\\\text{ ^FOC = ^OCB (SLT)}\\\text{^AEF = ^B (Đồng vị)}\\\text{^AFE = ^C (Đồng vị)}\end{matrix}\right.\)

Có: ^OBC = ^OBA ( BF là phân giác ^B)

mà:  ^EOB = ^OBC (cmt)

=> ^EOB = ^OBA => tam giác EBO cân tại E

Có: ^OCA = ^OCB ( BF là phân giác ^B)

mà:  ^FOC = ^OCB (cmt)

=> ^FOC = ^OCA => tam giác FCO cân tại E

Ta có: ^AEF = ^B (cmt)

           ^AFE = ^C (cmt)

Mà ^B = ^C (tam giác ABC cân tại A)

=> ^AEF =  ^AFE => tam giác AEF cân tại A

Có : ^ABF = ^CBF =  \(\dfrac{1}{2}\) ^B ( BF là phân giác ^B)

       ^ACE = ^BCE = \(\dfrac{1}{2}\) ^B ( CF là phân giác ^C)

mà : ^B = ^C (tam giác ABC cân tại A)

=> ^ACE = ^ABF = ^CBF = ^BCE

Xét tg OBC có: ^OBC = ^OCB (^CBF = ^BCE) => tg OBC cân tại O

Xét tam giác FCO và tam giác EBO có:

^FOC = ^FOB ( đối đỉnh)

^FCO = ^EBO (^ABF = ^ACE)

OB = OC ( tg OBC cân tại O )

=> tam giác FCO = tam giác EBO(g-c-g)