1.Tính nhanh:16+(27-7.6)-(94-7-27.99)
2.Tính tổng:A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)
\(A=2\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}\right)\)
\(A=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(A=2\left(1-\frac{1}{100}\right)\)
\(A=2.\frac{99}{100}=..............\)
Tự làm nốt nha
a) \(16+\left(27-7\cdot6\right)-\left(94\cdot7-27\cdot99\right)\)
\(=16+27-7\cdot6-94\cdot7+27\cdot99\)
\(=16+27\left(1+99\right)-7\left(6+94\right)=16+2700-700=2016\)
b)\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{7}+\frac{2}{7}-\frac{2}{10}+...+\frac{2}{97}-\frac{2}{100}\right)\)
\(=\frac{1}{3}\left(2-\frac{2}{100}\right)=\frac{1}{3}\cdot\frac{99}{50}=\frac{33}{50}\)
b: Ta có: \(B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\)
\(=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{65}{4\cdot69}\)
\(=\dfrac{13}{276}\)
\(A=\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+...+\dfrac{2}{97\cdot100}\\ A=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{2}{3}\cdot\dfrac{99}{100}=\dfrac{33}{50}\\ B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\\ B=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{69}\right)=\dfrac{1}{5}\cdot\dfrac{65}{276}=\dfrac{13}{276}\)
\(C=70\left(\dfrac{13}{56}+\dfrac{13}{72}+\dfrac{13}{90}\right)=70\cdot13\left(\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\\ C=910\left(\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{10}\right)=910\cdot\dfrac{3}{70}=39\)
\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)
\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(A=3.\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)
Giải:
\(S=\dfrac{1}{1.4}-\dfrac{1}{4.7}-\dfrac{1}{7.10}-...-\dfrac{1}{97.100}\)
\(\Leftrightarrow S=-\left(-\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{97.100}\right)\)
\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{101}{100}\right)\)
\(\Leftrightarrow S=\dfrac{101}{300}\)
Vậy ...
Bạn ơi cho mình hỏi tại sao phía trước \(-\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-.....+\dfrac{1}{97}-\dfrac{1}{100}\) lại là \(-\dfrac{1}{3}\)
\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+...+\dfrac{2}{97.100}\)
=> \(\dfrac{2.3}{1.4}+\dfrac{2.3}{4.7}+...+\dfrac{2.3}{97.100}\)
=> \(2.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
=> \(2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
=> \(2.\left(1-\dfrac{1}{100}\right)\)
=>\(2\).\(\dfrac{99}{100}\)
=\(\dfrac{99}{50}\)
\(l=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+....+\dfrac{1}{97.100}\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{1}{3}-\dfrac{1}{300}< \dfrac{1}{3}\left(đpcm\right)\)
a) Ta có: \(A=\dfrac{4}{1\cdot4}+\dfrac{4}{4\cdot7}+\dfrac{4}{7\cdot10}+...+\dfrac{4}{31\cdot34}\)
\(=\dfrac{4}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{31\cdot34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\left(1-\dfrac{1}{34}\right)\)
\(=\dfrac{4}{3}\cdot\dfrac{33}{34}=\dfrac{22}{17}\)
1.
`16 + (27 - 7.6 ) - (94 -7 - 27.99)`
`= 16+ 27 - 7.6 - 94 + 7 + 27.99`
`= 16 + 27(99 +1) - 7(6-1) - 94`
`= -78 + 27.100 - 7.5`
`= 2587`
2.
`A = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/97.100`
`A= 2(1/1.4 + 1/4.7 + 1/7.10 +...+1/97.100)`
`3A = 2 (3/1.4 + 3/4.7 + 3/7.10+...+ 3/97.100)`
`3/2 A = 1 - 1/4 + 1/4 - 1/7 +...+ 1/97 - 1/100`
`3/2A = 1 - 1/100`
`3/2 A= 99/100`
`A= 99/100 : 3/2`
`A=33/50`
Vậy `A= 33/50`
1.16+(27-7.6)-(94-7-27.99)=16+27-7.6-94+7+27.99
=(27+27.99)+(27+7-94)+16
=27.100-60+16
=2700-44=2656
2.A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
=\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}=\dfrac{99}{100}\)