K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

\(l=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+....+\dfrac{1}{97.100}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{1}{3}-\dfrac{1}{300}< \dfrac{1}{3}\left(đpcm\right)\)

b: Ta có: \(B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\)

\(=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\)

\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{65}{4\cdot69}\)

\(=\dfrac{13}{276}\)

26 tháng 9 2021

\(A=\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+...+\dfrac{2}{97\cdot100}\\ A=\dfrac{2}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{97\cdot100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\\ A=\dfrac{2}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{2}{3}\cdot\dfrac{99}{100}=\dfrac{33}{50}\\ B=\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+...+\dfrac{1}{64\cdot69}\\ B=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\\ B=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{69}\right)=\dfrac{1}{5}\cdot\dfrac{65}{276}=\dfrac{13}{276}\)

\(C=70\left(\dfrac{13}{56}+\dfrac{13}{72}+\dfrac{13}{90}\right)=70\cdot13\left(\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\\ C=910\left(\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ C=910\left(\dfrac{1}{7}-\dfrac{1}{10}\right)=910\cdot\dfrac{3}{70}=39\)

5 tháng 11 2017

\(\dfrac{1}{3}\)x(\(\dfrac{3}{1+4}\)+\(\dfrac{3}{4+7}\)+........+\(\dfrac{3}{101+103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+.........+\(\dfrac{ }{ }\)\(\dfrac{1}{101}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x(\(\dfrac{1}{1}\)-\(\dfrac{1}{103}\))

\(\dfrac{1}{3}\)x\(\dfrac{102}{103}\)

\(\dfrac{34}{103}\)

27 tháng 10 2017

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(=\dfrac{1}{1}-\dfrac{1}{103}\)

\(=\dfrac{102}{103}\)

19 tháng 9 2017

\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{97}-\dfrac{1}{100}\right)=\dfrac{0,33x}{2009}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot\dfrac{99}{100}=\dfrac{0,33x}{2009}\)

\(\Leftrightarrow\dfrac{33}{100}=\dfrac{0,33x}{2009}\) <=> x = (tự tính )

17 tháng 4 2018

⇔13(11−14+14−...+197−1100)=0,33x2009⇔13(11−14+14−...+197−1100)=0,33x2009

⇔13⋅99100=0,33x2009⇔13⋅99100=0,33x2009

a) Ta có: \(A=\dfrac{4}{1\cdot4}+\dfrac{4}{4\cdot7}+\dfrac{4}{7\cdot10}+...+\dfrac{4}{31\cdot34}\)

\(=\dfrac{4}{3}\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{31\cdot34}\right)\)

\(=\dfrac{4}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)\)

\(=\dfrac{4}{3}\left(1-\dfrac{1}{34}\right)\)

\(=\dfrac{4}{3}\cdot\dfrac{33}{34}=\dfrac{22}{17}\)

22 tháng 10 2018

\(a,A=\dfrac{101}{100}+\dfrac{102}{100}+\dfrac{103}{100}+...+\dfrac{199}{100}\)

\(A=\dfrac{101+102+103+...+109}{100}\)

Xét tử số : \(101+102+103+...+199\)

Có : \(\left(199-101\right):1+1=99\) (số hạng)

\(\Rightarrow\) Tử số bằng \(:\left(199+101\right).99:2=14850\)

\(\Rightarrow A=\dfrac{14850}{100}=\dfrac{297}{2}\)

\(b,B=\dfrac{10002}{10000}+\dfrac{10004}{10000}+\dfrac{10006}{10000}+...+\dfrac{12014}{10000}\)

\(B=\dfrac{10002+10004+10006+...+12014}{10000}\)

\(B=\dfrac{10002+10004+10006+...+12014}{10000}\)

Xét tử số : \(10002+10004+10006+...+12014\)

Có : \(\left(12014-10002\right):2+1=1007\) (số hạng)

\(\Rightarrow\) Tử số bằng : \(\left(12014+10002\right).1007:2=11085056\)

\(\Rightarrow B=\dfrac{11085056}{10000}\)

Bạn tự làm câu C nha

\(D=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{2014.2015}\)

\(\Rightarrow D=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\)

\(\Rightarrow D=\dfrac{1}{5}-\dfrac{1}{2015}=\dfrac{402}{2015}\)

\(E=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{2014.2017}\)

\(\Rightarrow3E=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{2014.2017}\)

\(\Rightarrow3E=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{2014}-\dfrac{1}{2017}\)

\(\Rightarrow3E=1-\dfrac{1}{2017}=\dfrac{2016}{2017}\)

\(\Rightarrow E=\dfrac{2016}{2017}:3=\dfrac{672}{2017}\)

22 tháng 10 2018

D = \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\) +...+ \(\dfrac{1}{2014.2015}\)
D = \(\dfrac{1}{5}\) - \(\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
+...+ \(\dfrac{1}{2014}-\dfrac{1}{2015}\)
D = \(\left(\dfrac{1}{5}-\dfrac{1}{2015}\right)\)
D = \(\dfrac{403}{2015}-\dfrac{1}{2015}\)
D = \(\dfrac{402}{2015}\)

13 tháng 6 2018

A = \(-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2020}\right)=-1+\dfrac{1}{2020}=\dfrac{-2019}{2020}\)

13 tháng 6 2018

dấu trừ tại sao lại thành cộng vậy bạn?nhonhung