cho tam giác ABC vuông tại A đường cao AH(H\(\in\)BC). biết độ dài cạnh AB=10cm, Ah=8cm.tính BH,CH (làm tròn đến chữ thập phân thứ 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có AB : AC = 4 : 5 ⇔ A B 4 = A C 5 ⇒ A B 2 16 = A C 2 25 = A B 2 + A C 2 16 + 25 = 41 41 = 1
(Vì theo định lý Py-ta-go ta có A B 2 + A C 2 = B C 2 ⇔ A B 2 + A C 2 = ( 41 ) 2 = 41 )
Nên A B 2 16 = 1 ⇒ A B 2 = 16 ⇒ AB = 4; A C 2 25 = 1 ⇒ AC = 5
Theo hệ thức lượng trong tam giác vuông ABC ta có:
A C 2 = C H . B C ⇒ C H = A C 2 B C = 25 41 ≈ 3 , 9
Vậy CH ≈ 3,9
Đáp án cần chọn là: D
Ta có: BH = \(\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9cm\\\)
=> \(AH=\sqrt{15^2-9^2}=12cm\) (Theo pytago)
=> HC = BC - BH = 25 - 9 = 16 cm
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow BH=\dfrac{AH^2}{HC}=\dfrac{8^2}{3}\simeq21,33\left(cm\right)\)
\(BH=\sqrt{10^2-8^2}=6\left(cm\right)\)
\(CH=\dfrac{AH^2}{BH}=\dfrac{8^2}{6}=\dfrac{64}{6}=\dfrac{32}{3}\left(cm\right)\)