K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2020

a/AB//DG nên \(\frac{AE}{AG}=\frac{BE}{BD}\left(1\right)\)

AD//BK nên \(\frac{AE}{AK}=\frac{DE}{DB}\left(2\right)\)

Cộng (1) và (2) vế theo vế có: \(AE\left(\frac{1}{AG}+\frac{1}{AK}\right)=\frac{BE}{DB}+\frac{DE}{DB}\)

\(\Leftrightarrow\frac{1}{AG}+\frac{1}{AK}=\frac{1}{AE}\)

b/AD//CK nên \(\Delta ADG\sim\Delta KCG\left(g-g\right)\Rightarrow\frac{S_{KCG}}{S_{ADG}}=\left(\frac{GC}{GD}\right)^2=\frac{1}{4}\)

Vậy \(S_{ABCD}=S_{ADG}+S_{ABCG}=4S_{KCG}+S_{ABCG}=3S_{KCG}+S_{ABK}\left(1\right)\)

\(\frac{GC}{CD}=\frac{1}{3}=\frac{GC}{AB}\)

GC//AB nên \(\Delta KCG\sim\Delta KBA\Rightarrow\frac{S_{KCG}}{S_{KBA}}=\left(\frac{GC}{AB}\right)^2=\frac{1}{9}\Rightarrow S_{KBA}=9S_{KCG}\)

Thay vào (1) đc \(S_{ABCD}=3S_{KCG}+9S_{KCG}=12S_{KCG}\)

7 tháng 3 2022

undefined

7 tháng 3 2022

cop nhớ ghi tham khảo

15 tháng 4 2015

b)

AB // DG suy ra AE / AG = BE / BD

AD // BC suy ra AE / AK = DE / BD

Suy ra AE / AG + AE / AK = BE /BD + DE / BD = BD / BD = 1

Chia 2 vế cho AE

1 / AG + 1 / AK = 1/  AE

15 tháng 4 2015

a) AB // CG suy ra AE / EG = BE / ED

AD // BC suy ra EK / AE = BE / ED

Suy ra AE / EG = EK / AE

Suy ra AE^2 = EK.EG

 

26 tháng 3 2017

Ai tk mình đi mình bị âm nè!

Ai tk mình mình tk lại!!!

26 tháng 3 2017

ahihi

1 tháng 2 2018

A B D C E G K a b

a) Vì ABCD là hình bình hành ( gt )

Và K thuộc BC nên

AD // BK Theo hệ quả của định lý Ta-let ta có :

\(\frac{EK}{AE}=\frac{EB}{ED}=\frac{AE}{EG}\Rightarrow\frac{EK}{AE}=\frac{AF}{EG}\Rightarrow AE^2=EK.EG\)

b) Ta có :

\(\frac{AE}{EK}-\frac{DE}{DB};\frac{AE}{AG}=\frac{BE}{BD}\)nên

\(\frac{AE}{AK}+\frac{AE}{AG}-\frac{BE}{BD}+\frac{DE}{DB}-\frac{BD}{BD}-1\Rightarrow\frac{1}{AE}=\frac{1}{AK}+\frac{1}{AG}\)

c) bạn tự làm tiếp mỏi tay quá

6 tháng 6 2019

Giải nốt bài của Pác Hiếu:3

Đặt \(AB=a',AD=b\)

Áp dụng Đ/L Thales vào tam giác ABK,ta có:

\(\frac{BK}{KC}=\frac{AB}{CG}\Rightarrow\frac{a'}{CG}=\frac{BK}{KC}\left(1\right)\)

Áp dụng Đ/L Thales vào tam giác ADG,ta có:

\(\frac{CG}{DG}=\frac{CK}{AD}\Rightarrow\frac{CG}{DG}=\frac{CK}{b}\left(2\right)\)

Nhân vế theo vế của (1);(2) ta có:

\(\frac{BK}{b}=\frac{a'}{DG}\Rightarrow BK\cdot DG=a'b\)  không đổi.