Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác ABCD là hình bình hành => AB//CD; AD//BC.
=> Giao điểm của AC; BD là trung điểm của mỗi đường
=> N là trung điểm BD (1)
Ta có: AE//BD. Mà AD//BE => Tứ giác AEBD là hình bình hành.
=> 2 đường chéo DE và AB cắt nhau tại trung điểm của mỗi đường.
=> M là trung điểm AB (2)
Tương tự: Tứ giác ABDF là hình bình hành
=> P là trung điểm AD (3)
Từ (1); (2) và (3) => G là trọng tâm của tam giác BAD.
=> AN, DM, BP đồng quy = >AC; DE; BF đồng quy (điều cần c/m).
Xét tứ giác AEBD có :
DB//FA (gt) hay DB//AE
AD//BC ( ABCD là hình bình hành ) hay AD//BE
suy ra , tứ giác AEBD là hình bình hành
hình vẽ hơi xấu mong bạn thông cảm
do BK// AD nên \(\frac{EK}{AE}\)= \(\frac{BE}{ED}\) (1)
do AB// DG nên \(\frac{AE}{EG}\)= \(\frac{BE}{ED}\) (2)
từ (1) và (2) => \(\frac{EK}{AE}\)= \(\frac{AE}{EG}\)
=> \(EK.EG=AE^2\)
nên \(EK.EG\) là không đổi
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành