Tìm các số tự nhiên có 3 chữ số biết tổng các chữ số là 9, chữ số hàng chục lớn hơn hàng đơn vị là 2, nếu đổi chỗ chữ số hàng trăm cho hàng đơn vị thì được số mới hơn số cũ là 198
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên đó có dạng \(\overline{abc}\left(1\le a\le9;0\le b,c\le9;a,b,c\in\mathbb{N}\right)\)
Theo đề bài ta có: \(a+b+c=21;c>b;\overline{cba}-\overline{abc}=198\left(1\right)\)
Hay \(\left\{{}\begin{matrix}a+b+c=21\\99\left(c-a\right)=198\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+c=21\\c-a=2\end{matrix}\right.\Rightarrow\left(c-2\right)+b+c=21\)
\(\Leftrightarrow2c+b=23.\) Mà ta có: \(23=2c+b< 3c\Rightarrow c>\dfrac{23}{3}\Rightarrow9\ge c\ge8\) (do $c\in \N$)
Với $c=9$ thì $b=5$ suy ra $a=7.$ Vậy số đó là $759.$
Với $c=8$ thì $b=7$ suy ra $a=6.$ Vậy số đó là $678$
Lâu không giải toán $6$ nên mình không chắc về cách trình bày đâu bạn nhé.
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.