cho \(a+b+c=1 cmr\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT \(\Leftrightarrow\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(a+b\right)\right]\left[\left(c+a\right)+\left(b+c\right)\right]\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Đây là BĐT quy thuộc! \(\left(a+b\right)+\left(a+c\right)\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) rồi tương tự các kiểu.
Nhân theo vế thu được đpcm
Sử dụng BĐT: \(\left(x+y+z\right)^3\ge27xyz\Rightarrow\left(\frac{x+y+z}{3}\right)^3\ge xyz\)
\(\Rightarrow\left(\frac{1+a+1+b+1+c}{3}\right)^3\ge\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge3\sqrt[3]{\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
\(\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Cộng vế với vế:
\(1\ge\frac{1+\sqrt[3]{abc}}{\sqrt[3]{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
Dấu "=" 3 BĐT trên xảy ra khi \(a=b=c\)
Lại có:
\(1+\sqrt[3]{abc}\ge2\sqrt{\sqrt[3]{abc}}\Rightarrow\left(1+\sqrt[3]{abc}\right)^3\ge\left(2\sqrt{\sqrt[3]{abc}}\right)^3=8\sqrt{abc}\)Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:\(\left(a-1\right)^2\ge0\)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow\left(a^2+2a+1\right)-4a\ge0\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\)
TT\(\Rightarrow\left(b+1\right)^2\ge4b\)
\(\left(c+1\right)^2\ge4b\)
Nhân vế theo vế ta được \(\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2\ge64abc=64\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)(đpcm)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ac+bc+ab+a+b+c+1\)
Áp dụng BĐT thức Cô si cho 3 số , ta có:
\(a+b+c\ge3\sqrt[3]{abc}=3\)
\(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}=3\)
\(\Rightarrow ab+bc+ca+a+b+c+2\ge3+3+2=8\left(đpcm\right)\)
\(a+b+c=1=>\left\{{}\begin{matrix}1-a=b+c\\1-b=a+c\\1-c=a+b\\\end{matrix}\right.\)
\(=>A=\left(\dfrac{1}{a}-1\right)\left(\dfrac{1}{b}-1\right)\left(\dfrac{1}{c}-1\right)=\left(\dfrac{1-a}{a}\right)\left(\dfrac{1-b}{b}\right)\left(\dfrac{1-c}{c}\right)\)
\(=\left(\dfrac{b+c}{a}\right)\left(\dfrac{a+c}{b}\right)\left(\dfrac{a+b}{c}\right)\)
bbđt AM-GM
\(=>A\ge\dfrac{2\sqrt{bc}.2\sqrt{ac}.2\sqrt{ab}}{abc}=\dfrac{8abc}{abc}=8\left(đpcm\right)\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)
Đặt vế trái BĐT cần chứng minh là P
Ta có:
\(P=\left(\dfrac{a+b+c}{a}-1\right)\left(\dfrac{a+b+c}{b}-1\right)\left(\dfrac{a+b+c}{c}-1\right)\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{abc}=8\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
1.
BĐT cần chứng minh tương đương:
\(\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\)
Ta có:
\(\left(ab-1\right)^2=a^2b^2-2ab+1=a^2b^2-a^2-b^2+1+a^2+b^2-2ab\)
\(=\left(a^2-1\right)\left(b^2-1\right)+\left(a-b\right)^2\ge\left(a^2-1\right)\left(b^2-1\right)\)
Tương tự: \(\left(bc-1\right)^2\ge\left(b^2-1\right)\left(c^2-1\right)\)
\(\left(ca-1\right)^2\ge\left(c^2-1\right)\left(a^2-1\right)\)
Do \(a;b;c\ge1\) nên 2 vế của các BĐT trên đều không âm, nhân vế với vế:
\(\left[\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\right]^2\ge\left[\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\right]^2\)
\(\Rightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Câu 2 em kiểm tra lại đề có chính xác chưa
2.
Câu 2 đề thế này cũng làm được nhưng khá xấu, mình nghĩ là không thể chứng minh bằng Cauchy-Schwaz được, phải chứng minh bằng SOS
Không mất tính tổng quát, giả sử \(c=max\left\{a;b;c\right\}\)
\(\Rightarrow\left(c-a\right)\left(c-b\right)\ge0\) (1)
BĐT cần chứng minh tương đương:
\(\dfrac{1}{a}-\dfrac{a+b}{bc+a^2}+\dfrac{1}{b}-\dfrac{b+c}{ac+b^2}+\dfrac{1}{c}-\dfrac{c+a}{ab+c^2}\ge0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)+a\left(c-b\right)}{a^3+abc}+\dfrac{c\left(a-b\right)}{b^3+abc}+\dfrac{a\left(b-c\right)}{c^3+abc}\ge0\)
\(\Leftrightarrow c\left(b-a\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{b^3+abc}\right)+a\left(c-b\right)\left(\dfrac{1}{a^3+abc}-\dfrac{1}{c^3+abc}\right)\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)\left(b^3-a^3\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c^3-a^3\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
\(\Leftrightarrow\dfrac{c\left(b-a\right)^2\left(a^2+ab+b^2\right)}{\left(a^3+abc\right)\left(b^3+abc\right)}+\dfrac{a\left(c-b\right)\left(c-a\right)\left(a^2+ac+c^2\right)}{\left(a^3+abc\right)\left(c^3+abc\right)}\ge0\)
Đúng theo (1)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)
Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)
Nhân theo vế ta đc :
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng bđt Cauchy :
\(VT\ge\frac{8abc}{abc}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)