Cho tam giác ABC(AB=AC) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D câu a chứng minh :AD là đường kính câu b tính góc ACD câu c biết AC=AB=20cm,BC=24cm tính bán kính của đường tròn tâm (O)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: OB=OC
AB=AC
Do đó: AO là đường trung trực của BC
=>A,O,H thẳng hàng
hay AD là đừog kính
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đo: ΔACD vuông tại C
hay góc ACD=90 độ
a/ vì (o) ngoại tiếp tam giác ABC => o là giao điểm 3 đường cao
mà tam giác ABC cân tại A => đường cao AH đồng thời là trung trực của BC
=>O thuộc AH
lại có AH giao (o) tại D => AD là đường kính
c) HC=1/2*BC=12
=>AH=căn(20^2-12^2)=16
ta có Sin(BAO)=12/20=>BAO=36.86989765
=>AOB=180-36.86989765*2=106.2602047
Ta có AB^2=AO^2+OB^2-2*OB*OA*cos(106.2602047)
<=>AO^2+OA^2-2OA^2*cos(106.2602047)=20^2
=>OA=12.5
a) ta có DOC=cung DC
Vì DOC là góc ở tâm và DAC là góc chắn cung DC
=>DOC=2*AOC (1)
mà tam giác AOC cân =>AOC=180-2/AOC (2)
từ (1);(2) ta dc DOC+AOC=180
b)góc ACD là góc nội tiếp chắn nữa đường tròn
=>ACD=90 độ
c) đợi xí
a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).
b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o
c, Ta có BH = HC = BC/2 = 12(cm)
Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256
=> AH = 16(cm)
AC2 = AD. AH
AD = AC2/AH = 25(cm)
Bán kính đường tròn(O) bằng 12,5cm.
a, Tam giác ABC cân tại A nên AH là đường trung trực của BC. Do đó AD là đường trung trực của BC. Vì O nằm trên đường trung trực của BC nên O nằm trên AD. Vậy AD là đường kính của đường tròn (O).
b, Tam giác ACD nội tiếp đường tròn đường kính AD nên ∠ACD = 90o
c, Ta có BH = HC = BC/2 = 12(cm)
Tam giác AHC vuông tại H nên AH2 = AC2 - HC2 = 202 - 122 = 256
=> AH = 16(cm)
AC2 = AD. AH
AD = AC2/AH = 25(cm)
Bán kính 25 cm
a) Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh BC
nên AH là đường trung tuyến ứng với cạnh BC
Ta có: AB=AC
nên A nằm trên đường trung trực của BC\(\left(1\right)\)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC\(\left(2\right)\)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(3)
Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng
\(\Leftrightarrow A,O,H,D\) thẳng hàng
hay AD là đường kính của \(\left(O\right)\)