K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: OB=OC

AB=AC
Do đó: AO là đường trung trực của BC

=>A,O,H thẳng hàng

hay AD là đừog kính

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đo: ΔACD vuông tại C

hay góc ACD=90 độ

a) Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường trung tuyến ứng với cạnh BC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(3)

Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng

\(\Leftrightarrow A,O,H,D\) thẳng hàng

hay AD là đường kính của \(\left(O\right)\)

29 tháng 12 2021

a: R=HC/2=6,4:2=3,2(cm)

23 tháng 5 2019

a, Sử dụng tính chất phân giác trong và phân giác ngoài tại 1 điểm ta có:

I B K ^ = I C K ^ = 90 0

=> B, C, I, K ∈ đường tròn tâm O đường kính IK

b, Chứng minh  I C A ^ = O C K ^  từ đó chứng minh được  O C A ^ = 90 0

Vậy AC là tiếp tuyến của (O)

c, Áp dụng Pytago vào tam giác vuông HAC  => AH=16cm. Sử dụng hệ thức lượng trong tam giác vuông COA => OH=9cm,OC=15cm

1 tháng 4 2021

a)     CMR: 4 điểm B, I, C, K cùng thuộc (O).

Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên IC là phân giác trong của góc C.

Vì K là tâm đường tròn ngoại tiếp tam giác ABC của góc A nên  CK là phân giác ngoài của góc C.

Theo tính chất phân giác trong và phân giác ngoài ta có IC vuông CK nên ∠ICK=90

Chứng minh hoàn toàn tương tự ta có: ∠IBK=90

Xét tứ giác BICK ta có: ∠IBK+∠ICK=90+90=180

⇒BICK  là tứ giác nội tiếp (tứ giác có tổng hai góc đối diện bằng 180)

Do O là trung điểm của IK nên theo tính chất trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền thì OC = OI = OK.

Vậy O là tâm đường tròn ngoại tiếp tứ giác IBKC.

b)     CMR: AC là tiếp tuyến của (O).

Ta có : Tam giác IOC cân tại O nên : ∠OIC=∠OCI.

Mặt khác, theo tính chất góc ngoài của tam giác ta có :

∠OIC=∠IAC+∠ACI=1/2∠BAC+1/2∠ACB=1/2∠BAC+1/2∠ABC

⇒∠ICO+∠ICA=1/2∠BAC+1/2∠ABC+1/2∠ACB=12.180=90 ⇒OC⊥CA.

Do đó AC là tiếp tuyến của (O) tại C (đpcm).

c)     Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.

Gọi diện tích hình cần tính là S, diện tích hình tròn (O) là S’, gọi giao điểm BC và IK là M.

Ta có ngay :

S = S′−S (ICKB) =π.IO2−S (IBK)−S (IKC)

= π.IK2/4 −(BM.IK)/2−(CM.IK)/2

=πIK2/4 − (BC.IK)/2

Ta có :

     S (ABC) = 1/2 (AM.BC) = (AB+BC+CA) /2 .IM

⇔√(AB2−BM2 ) .24 = (AB+BC+CA).IM

⇔√[202−(24/2)2 ]. 24= (20.2+24).IM⇔IM=6.     

Áp dụng hệ thức lượng trong tam giác IBM vuông tại B  có đường cao BM ta có :

BM2=IM.MK ⇔MK=BM2/IM=122/6=24

⇒IM=IM+MK=6+24=30.

⇒S= 1/4(π.IK2)−1/2 BC.IK =1/4 π.30−1/2(24.30 )  =225π−360 ≈346,86  (dvdt)