\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}\)= -2x2+8x-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\frac{4-\sqrt{10}}{2}\le x\le\frac{4+\sqrt{10}}{2}\)
Đặt : \(\sqrt{3x^2-12x+21}=a;\sqrt{5x^2-20x+24}=b\left(a,b>0\right)\Rightarrow a^2-b^2=-2x^2+8x-3\)
Khi đó pt trở thành:
\(a+b=a^2-b^2\)
\(\Rightarrow a=b\)
Theo cách đặt: \(\sqrt{3x^2-12x+21}=\sqrt{5x^2-20x+24}\)
\(\Leftrightarrow2x^2-8x+3=0\)
Đến đây bạn tự giải nha
+ \(\sqrt{3x^2-12x+21}=\sqrt{3\left(x-2\right)^2+9}\ge3\)
\(\sqrt{5x^2-20x+24}=\sqrt{5\left(x-2\right)^2+4}\ge2\)
=> \(VT\ge5\) Dấu "=" \(\Leftrightarrow x=2\) (1)
+ VP \(=-2\left(x^2-4x+4\right)+5=-2\left(x-2\right)^2+5\le5\forall x\) (2)
Dấu "=" \(\Leftrightarrow x=2\)
+ Từ (1) và (2) suy ra
\(pt\Leftrightarrow VT=VP=5\) \(\Leftrightarrow x=2\)
\(\sqrt{3x^2-12x+21}=\sqrt{3x^2-12x+12+9}=\sqrt{3\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
\(\sqrt{5x^2-20x+24}=\sqrt{5x^2-20x+20+4}=\sqrt{5\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(-2x^2+8x-3=-2x+8x-8+5=-2\left(x-2\right)^2+5\le5\)
\(VP\ge3+2=5,VT\le5\)
Suy ra \(VP=VT=5\)
Suy ra nghiệm của phương trình đạt tại \(x-2=0\Leftrightarrow x=2\).
\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)
\(\left(\sqrt{3x^2-12x+21}-3\right)+\left(\sqrt{5x^2-20x+24}-2\right)=-2x^2+8x-8\)
\(\frac{3x^2-12x+21-9}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+24-4}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)
\(\frac{3x^2-12x+12}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+20}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)
\(\frac{\left(x-2\right)\left(3x-6\right)}{\sqrt{3x^2-12x+21}+3}+\frac{\left(x-2\right)\left(5x-10\right)}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)
\(\left(x-2\right)\left(\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\right)=0\)
\(\orbr{\begin{cases}x=2\left(TM\right)\\\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\ne0\left(KTM\right)\end{cases}}\)
vậy pt có nghiệm duy nhất là 2
Mà bạn ơi, tại sao cái về sau khác 0 được vậy bạn ? Sao mình không đặt (x-2)^2 luôn nhỉ? Dù sao cũng cảm ơn ha!
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
Đặt \(\left\{{}\begin{matrix}\sqrt{3x^2-12x+21}=a>0\\\sqrt{5x^2-20x+24}=b>0\end{matrix}\right.\)
\(\Rightarrow a+b=a^2-b^2\)
\(\Leftrightarrow a+b=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(a-b-1\right)=0\)
\(\Leftrightarrow a-b-1=0\)
\(\Leftrightarrow\sqrt{5x^2-20x+24}+1=\sqrt{3x^2-12x+21}\)
\(\Leftrightarrow5x^2-20x+25+2\sqrt{5x^2-20x+24}=3x^2-12x+1\)
\(\Leftrightarrow2\sqrt{5x^2-20x+24}=-2x^2+8x-4\)
Ta có: \(\left\{{}\begin{matrix}VT=2\sqrt{5x^2-20x+24}=2\sqrt{5\left(x-2\right)^2+4}\ge4\\VP=-2x^2+8x-4=4-2\left(x-2\right)^2\le4\end{matrix}\right.\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi \(x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)