K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

TXĐ: D=[-4;4]

\(f\left(-x\right)=\sqrt{4-\left(-x\right)}+\sqrt{-x+4}\)

\(=\sqrt{4-x}+\sqrt{4+x}\)

=f(x)

=>f(x) là hàm số chẵn

NV
23 tháng 10 2021

ĐKXĐ:

a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)  \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)

b. \(D=R\)

c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)

d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)

NV
21 tháng 12 2020

Hàm xác định trên R

\(f\left(-x\right)=\dfrac{\left|-x+1\right|-\left|-x-1\right|}{\left|-x+2\right|+\left|-x-2\right|}=\dfrac{\left|x-1\right|-\left|x+1\right|}{\left|x+2\right|+\left|x-2\right|}=-f\left(x\right)\)

Hàm đã cho là hàm lẻ

11 tháng 10 2021

a: \(f\left(-x\right)=-2\cdot\left(-x\right)^3+3\cdot\left(-x\right)\)

\(=2x^3-3x\)

\(=-\left(-2x^3+3x\right)\)

=-f(x)

Vậy: f(x) là hàm số lẻ

c: TXĐ: D=[-2;2]

Nếu \(x\in D\Leftrightarrow-x\in D\)

\(f\left(-x\right)=\sqrt{6-3\cdot\left(-x\right)}-\sqrt{6+3\cdot\left(-x\right)}\)

\(=\sqrt{6+3x}-\sqrt{6-3x}\)

\(=-f\left(x\right)\)

Vậy: f(x) là hàm số lẻ

11 tháng 10 2021

Còn b,d thì làm sao v ạ.

NV
6 tháng 10 2021

a. \(D=R\)

\(g\left(-x\right)=\sqrt{\left(-x\right)^4-2\left(-x\right)+3}-\sqrt{\left(-x\right)^4+2\left(-x\right)+3}\)

\(=\sqrt{x^4+2x+3}-\sqrt{x^4-2x+3}=-\left(\sqrt{x^4-2x+3}-\sqrt{x^4+2x+3}\right)\)

\(=-g\left(x\right)\)

Hàm lẻ

b.

\(D=R\)

\(h\left(-x\right)=\sqrt[3]{-x+1}-\sqrt[3]{-x-1}=-\sqrt[3]{x-1}+\sqrt[3]{x+1}\)

\(=\sqrt[3]{x+1}-\sqrt[3]{x-1}=h\left(x\right)\)

Hàm chẵn

e: \(f\left(-x\right)=\dfrac{\left(-x\right)^4+3\cdot\left(-x\right)^2-1}{\left(-x\right)^2-4}=\dfrac{x^4+3x^2-1}{x^2-4}=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

3 tháng 12 2021

\(c,f\left(-x\right)=\sqrt{-2x+9}=-f\left(x\right)\)

Vậy hàm số lẻ

\(d,f\left(-x\right)=\left(-x-1\right)^{2010}+\left(1-x\right)^{2010}\\ =\left[-\left(x+1\right)\right]^{2010}+\left(x-1\right)^{2010}\\ =\left(x+1\right)^{2010}+\left(x-1\right)^{2010}=f\left(x\right)\)

Vậy hàm số chẵn

\(g,f\left(-x\right)=\sqrt[3]{-5x-3}+\sqrt[3]{-5x+3}\\ =-\sqrt[3]{5x+3}-\sqrt[3]{5x-3}=-f\left(x\right)\)

Vậy hàm số lẻ

\(h,f\left(-x\right)=\sqrt{3-x}-\sqrt{3+x}=-f\left(x\right)\)

Vậy hàm số lẻ

14 tháng 10 2019

\(DK:\hept{\begin{cases}-1\le x\le1\\x\ne0\end{cases}}\)

Ta co:

\(f\left(-x\right)=\frac{\sqrt{1-\left(-x\right)}+\sqrt{-x+1}}{\sqrt{-x+2}-\sqrt{2-\left(-x\right)}}=-\left(\frac{\sqrt{1-x}+\sqrt{x+1}}{\sqrt{x+2}-\sqrt{2-x}}\right)=-f\left(x\right)\)

Suy ra: f(x) la ham so chan

28 tháng 1 2023

f. 

\(x+1>0\) và \(7-2x>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)

g.

\(x+1>0\) và \(x^2-4\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)

 

h: ĐKXĐ: |x+1|-|x-2|<>0

=>|x+1|<>|x-2|

=>x-2<>x+1 và x+1<>-x+2

=>2x<>1

=>x<>1/2

g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0

=>x>-2 và x>-1 và x<>2; x<>-2

=>x>-1; x<>2

f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x

=>3x<>6 và -1<=x<=7/2

=>x<>2 và -1<=x<=7/2