K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a) Nối B với M

Xét tam giác OBM,có:

        OB=OM(Cùng là bán kính)

=>Tam giác OBM cân tại O

=>Góc OMB=Góc OBM (2gocs tương ứng)

Ta có:By tiếp tuyến với đg tròn (O) tại B

=>Góc OBy=90o(t/c...)

Hay góc OBC=90o (C∈By)

  CD tiếp tuyến với đg tròn (O)

=>Góc OMD=góc OMC=90o(t/c...)

Ta có:OBM+MBD=OBD

          OMB+BMD=OMD

   MàOBM=OMB (cmt)

         OBD=OMD (=90o)

  =>MBD=BMD

Xét tam giác BMD, có:

    MBD=BMD (cmt)

=>Tam giác BMD cân tại D

=>BD=MD (2 cạnh tương ứng)

Nối A với M

Xét tam giác AOM,có:

 OA=OM (cùng là R)

=>TAm giác OAM cân tại O

=>OAM=OMA(2 góc tương ứng)

Ta có :Ax tiếp tuyến với đg tròn (O) tại A

=>OAx=90o

HayOAC=90o (C∈Ax)

Ta có :OAM+MAC=OAC

           OMA+AMC=OMC

    Mà:OAM=OMA(cmt)

          OAC=OMC(=90o)

=>MAC=AMC

Xét tam giác ACM,có:

 MAC=AMC(cmt)

=>Tam giác ACM cân tại C

=>AC=CM(2 cạnh tương ứng)

Ta có:CM+MD=CD

   Mà:CM=AC(cmt)

         MD=BD(cmt)

=>AC+BD=CD

b)Gọi E là gđ của AM và CO

Ta có : AC cắt CM tại C

Mà AC và CM là tiếp tuyến của đg tròn (O)

=>AC=MC;CO là p/g của ACM(...)

Vì CO là p/g của ACM(cmt)

=>ACO=MCO

Hay ACI=MCI

Xét tam giác ACI và tam giác MCI,có:

           AC=MC(cmt)

         ACO=MCO(cmt)

         CI là cạnh chung

 =>Tam giác ACI=Tam giác MCI(c.g.c)

=>AIC=MIC(2 góc tương ứng);AI=MI

Ta có:AIC+MIC=180o(2 góc bù nhau)

   Mà AIC=MIC(cmt)

     =>AIC=90o

=>OC⊥AM tại I

 

 

29 tháng 7 2021

c) BM cắt Ax tại E.BC cắt MH tại I

Vì AB là đường kính nên \(\angle AMB=90\)

Vì CM,CA là tiếp tuyến nên \(CM=CA\)

Ta có tam giác AME vuông tại M có \(CM=CA\Rightarrow C\) là trung điểm AE

Vì \(MH\parallel AE(\bot AB)\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{IH}{AC}=\dfrac{BI}{BC}\\\dfrac{IM}{CE}=\dfrac{BI}{BC}\end{matrix}\right.\Rightarrow\dfrac{IH}{AC}=\dfrac{IM}{CE}\)

mà \(AC=CE\Rightarrow IH=IM\) nên ta có đpcm

undefined

NV
8 tháng 5 2023

C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM

\(\Rightarrow E\) là trung điểm AM

Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM

\(\Rightarrow EF\) là đường trung bình tam giác ABM 

\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)

Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM 

\(\Rightarrow OF=\dfrac{1}{2}AM=AE\) 

Mà \(OF||AE\) (cùng vuông góc BM)

\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)

Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)

\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)

Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)

\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)

\(\Rightarrow ONEF\) là hình thang cân

NV
7 tháng 5 2023

loading...

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF

2 tháng 10 2016

54535

21 tháng 11 2022

a: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính CD

Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO''//AC

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

a: Xét tứ giác PAOM có

góc PAO+góc PMO=180 độ

=>PAOM là tứ giác nội tiếp

b: Xét (O) có

PA,PM là tiếp tuyến

nên PA=PM và OP là phân giác của góc MOA(1)

mà OA=OM

nên OP là trung trực của AM

=>OP vuông góc AM

Xét (O) có

QM,QB là tiếp tuyến

nên QM=QB và OQ là phân giác của góc MOB(2)

mà OM=OB

nên OQ là trung trực của MB

=>OQ vuông góc MB tại K

Từ (1), (2) suy ra góc POQ=1/2*180=90 độ

Xét tứ giác MIOK có

góc MIO=góc MKO=góc IOK=90 độ

=>MIOK là hình chữ nhật

Xét ΔOPQ vuông tại O có OM là đường cao

nên MP*MQ=OM^2=R^2

=>AP*QB=OM^2=R^2 ko đổi