Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
OM là bán kính
EF vuông góc OM tại M
Do đó: EF là tiếp tuyến của (O)
b: Xét (O) có
EM.EA là tiếp tuyến
nên EM=EA
Xét(O) có
FM,FB là tiếp tuyến
nên FM=FB
EF=EM+MF
=>EF=EA+FB
b) Xét tứ giác OMCN có:
∠(OMC) = 90 0 (AC ⊥ OD)
∠(ONC) = 90 0 (CB ⊥ OE)
∠(NCM) = 90 0 (AC ⊥ CB)
⇒ Tứ giác OMCN là hình chữ nhật
GT : Nửa đường tròn tâm O đường kính AB , C thuộc nữa đường tròn , D nằm trên đoạn OA, tiếp tuyến Ax,By của nửa đường tròn . Qua C , đường thẳng vuông góc CD cắt tiếp tuyến Ax,By ở M và N ; AC cắt DM = {P} ; BC cắt DN = {Q}
KL : a) ADCM và BDCN nội tiếp đường tròn
b) Góc MDN = 90 độ
C . PQ//AB
Mik giải luôn nhé để nếu bạn cần thì có thể tham khảo luôn :
(Dưới đây là bài làm tham khảo , bạn có thể tham khảo nhé !)
Nguồn bài tham khảo nếu bạn muốn xem thêm cách làm khác :https://hoc24.vn/cau-hoi/cho-nua-duong-tron-tam-o-duong-kinh-ab-lay-diem-c-thuoc-nua-duong-tron-va-diem-d-tren-doan-oa-ve-cac-tiep-tuyen-axby-cua-nua-duong-tron-duong-than.222294491220
a: Xét tứ giác OBDM có
góc OBD+góc OMD=180 độ
=>OBDM là tư giác nội tiếp
c: Xét ΔKOB và ΔKFE có
góc KOB=góc KFE
góc OKB=góc FKE
=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE
=>KO*KE=KB*KF