K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

19 tháng 1 2017

5 tháng 12 2019

Đáp án D

Ta có  y ' = cos x − m .

Hàm số nghịch biến trên R

⇔ y ' ≤ 0 , ∀ x ∈ ℝ ⇒ cos x − m ≤ 0 ∀ x ∈ ℝ ⇔ cos x ≤ m ∀ x ∈ ℝ ⇒ m ≥ M a x ℝ cos x = 1.

12 tháng 2 2017

Đáp án đúng : C

9 tháng 1 2017

Chọn A.

Tập xác định:D= R. Ta có:y ‘= m-3 + (2m+1).sinx

Hàm số nghịch biến trên R

 

Trường hợp 1: m= -1/ 2 ; ta có  0 ≤ 7 2   ∀ x ∈ ℝ

Vậy hàm số luôn nghịch biến trên R.

Trường hợp 2: m< -1/ 2 ; ta có

 

 

Trường hợp 3:m > -1/2 ; ta có:

Vậy  - 4 ≤ m ≤ 2 3

 

7 tháng 8 2018

Đáp án C

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

24 tháng 10 2019

C

15 tháng 2 2017

Đáp án A

18 tháng 10 2017

Chọn A

22 tháng 3 2018

Đáp án A

  

 

Bài toán đưa về

17 tháng 7 2021

 sao lại cho g(-1) và cho g(1) vào vậy ạ