K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2017

Đáp án D

10 tháng 2 2019

Đáp án B

Kẻ A P ⊥ B C ( P ∈ B C ) ⇒ A ' P A ^ = 45 ° ⇒ A A ' = A P  

Mà cos 60 ° = A P A B = 1 2 ⇒ A P = a ⇒ A A ' = a  

⇒ V = A ' A . S A B C = a . 1 a . sin 120 ° = a 3 3

25 tháng 1 2019

Đáp án C

22 tháng 4 2017

Đáp án D

20 tháng 12 2019

Đáp án C

26 tháng 8 2019

5 tháng 1 2020

16 tháng 6 2017

Chọn A.

Do đáy tam giác vuông cân tại B, AC = a 2 nên AB = a.

Lại có:  nên góc tạo bởi (A'BC) và đáy là A ' B A ^

Theo bài ra:  A ' B A ^ = 60 °

Thể tích V của khối lăng trụ: 

a: BB'=2a^2:a=2a

V=BB'*S ABC

=2a*1/2a^2

=a^3

MN
30 tháng 8

a) Với hình lăng trụ đứng ABC.ABC, diện tích tứ giác ABBA bằng 2a^2 và đáy ABC là tam giác vuông cân tại A, ABa. Thể tích khối lăng trụ ABC.ABC có thể tính bằng công thức: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Vì đáy ABC là tam giác vuông cân nên diện tích đáy là \(\frac{1}{2} \times a \times a = \frac{1}{2}a^2\). Chiều cao của lăng trụ chính là cạnh AB, vì tam giác ABa là tam giác vuông cân nên \(AB = \sqrt{2}a\). Do đó, thể tích khối lăng trụ ABC.ABC là: \(V = \frac{1}{3} \times \frac{1}{2}a^2 \times \sqrt{2}a = \frac{\sqrt{2}}{6}a^3\). b) Với hình lăng trụ đứng ABC.ABC, góc giữa (ABC) và (ABC) bằng 60°, ta cũng áp dụng công thức tính thể tích khối lăng trụ: \(V = \frac{1}{3} \times \text{Diện tích đáy} \times \text{Chiều cao}\). Diện tích đáy và chiều cao đã được tính tương tự như phần a), ta có thể tính được thể tích khối lăng trụ ABC.ABC.

30 tháng 8 2017

Đáp án B