Cho các số thực a, b thỏa mãn 2 5 < a < b < 1 . Tìm giá trị nhỏ nhất của biểu thức T = 27 log a b 2 b + log b 8 5 a − 2 25 − 3.
A. 11
B. 8
C. 9
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si:
$a^2+1\geq 2a$
$b^2+4\geq 4b$
$\Rightarrow a^2+b^2\geq 2a+4b-5$
$\Rightarrow P\geq 2a+4b-5+\frac{1}{a+b}+\frac{1}{b}$
$=\frac{a+b}{9}+\frac{1}{a+b}+(\frac{b}{4}+\frac{1}{b})+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq 2\sqrt{\frac{1}{9}}+2\sqrt{\frac{1}{4}}+\frac{17}{9}a+\frac{131}{36}b-5$
$=\frac{2}{3}+1+\frac{17}{9}a+\frac{131}{36}b-5$
$\geq \frac{2}{3}+1+\frac{17}{9}+\frac{131}{36}.2-5=\frac{35}{6}$
Vậy $P_{\min}=\frac{35}{6}$ khi $a=1; b=2$
Đáp án B.