Cho hình chóp đều S.ABCD có cạnh đáy bằng 2a, khoảng cách giữa hai đường thẳng SA và CD bằng a 3 . Tính thể tích khối chóp S.ABCD.
A. 3 a 3 3
B. 4 3 a 3
C. 3 a 3
D. 4 3 a 3 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi O là tâm của hình vuông ABCD, ta có
C D ⫽ S A B ⇒ d S A , C D = d C D , S A B = 2 d O , S A B = a 3
Gọi M là trung điểm của AB,
kẻ O K ⊥ S M tại K
Khi đó
O K ⊥ S A B ⇒ d O , S A B = O K = a 3 2
Xét tam giác vuông SMO, ta có:
1 S O 2 + 1 O M 2 = 1 O K 2 ⇒ S O = a 3
Vậy thể tích khối chóp S.ABCD là:
V = 1 3 S O . S A B C D = 4 3 3 a 3