Gieo một con súc sắc cân đối và đồng chất, xác suất để mặt có số chấm chẵn xuất hiện là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Không gian mẫu là:
Gọi A là biến cố: “Mặt có số chấm chẵn xuất hiện”.
Xác suất để mặt có số chấm chẵn xuất hiện là:
Gọi B là biến cố: “Tổng số chấm xuất hiện trên bề mặt con súc sắc bằng 12”
Ta thấy
12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4
Nếu số chấm trên bề mặt 3 con súc sắc khác nhau tức là các trường hợp (1;5;6), (2;4;6), (3;4;5) có 3 ! .3 = 18 cách
Nếu số chấm trên bề mặt 3 con súc sắc có 2 con giống nhau tức là các trường hợp (2;5;5) và (3;3;6) có 3.2 = 6 cách
Nếu số chấm trên bề mặt 3 con súc sắc giống nhau ta có 1 cách gieo duy nhất
⇒ n B = 18 + 6 + 1 = 25 . Vậy P B = n B Ω B = 25 216 .
Chọn A
Chọn D
Theo đề bài b là số chấm của con súc sắc nên b ∈ {1;2;3;4;5;6}
Để phương trình x 2 + 2bx + 4 = 0 có nghiệm thì
Kết hợp b ∈ [1;6] suy ra b ∈ {2;3;4;5;6} Suy ra xác suất để phương trình
x 2 + 2bx + 4 = 0 có nghiệm là 5 6
Đáp án D.
Phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt ⇔ Δ = b 2 − 8 > 0.
Mà 1 ≤ b ≤ 6 , b ∈ ℕ * ⇒ b ∈ 3 ; 4 ; 5 ; 6 .
Xác suất cần tìm là 4 6 = 2 3 .
Đáp án D
Phương pháp:
+) Phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt ⇔ ∆ > 0
Cách giải:
Phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt ⇔ ∆ = b 2 - 8 > 0
Vì b là số chấm của con súc sắc nên
Vậy xác suất cần tìm là 4 6 = 2 3
Đáp án D
Phương trình x 2 + b x + 2 = 0 có hai nghiệm phân biệt
⇔ ∆ = b 2 - 8 > 0
⇒ b ∈ 3 ; 4 ; 5 ; 6
Xác suất cần tìm là 4 6 = 2 3