Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC. GỌi D,E theo thứ tự là chân đường vuông góc kẻ từ M đến AB, AC. So sánh độ dài AM, DE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AH ⊥ BC nên AM ≥ AH (quan hệ đường vuông góc và đường xiên)
Dấu “=” xảy ra khi M trùng với H
Mà DE = AM ( chứng minh trên)
Vậy DE có độ dài nhỏ nhất bằng AH khi M là chân đường vuông góc kẻ từ A đến BC
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
Gọi H là trung điểm của BC
Suy ra: AH ⊥ BC (tính chất tam giác cân)
Do đó, AM ≥ AH ( quan hệ đường vuông góc và đường xiên )(dấu " = " xảy ra khi M trùng với H)
Tứ giác ADME là hình chữ nhật .
⇒ AM = DE (tính chất hình chữ nhật)
Suy ra: DE ≥ AH
Vậy DE có độ dài nhỏ nhất là AH khi và chỉ khi điểm M là trung điểm của BC.
a) Xét tứ giác AEMF có
\(\widehat{AFM}=90^0\)(gt)
\(\widehat{AEM}=90^0\)(gt)
\(\widehat{FAE}=90^0\)(gt)
Do đó: AFME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AM=EF(Hai đường chéo của hình chữ nhật AFME)
b) Gọi O là giao điểm của AM và EF
Ta có: AMFE là hình chữ nhật(cmt)
nên Hai đường chéo AM và EF cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)
mà O là giao điểm của AM và EF(gt)
nên O là trung điểm của AM; O là trung điểm của EF
Ta có: ΔAHM vuông tại H(gt)
mà HO là đường trung tuyến ứng với cạnh huyền AM(O là trung điểm của AM)
nên \(HO=\dfrac{AM}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà AM=EF(cmt)
nên \(HO=\dfrac{EF}{2}\)
Xét ΔHFE có
HO là đường trung tuyến ứng với cạnh EF(O là trung điểm của EF)
\(HO=\dfrac{EF}{2}\)(cmt)
Do đó: ΔHFE vuông tại H(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
hihihihihihiihiihiihihiihihihihihihihihihihihihihihiihihiihihihihihihiihihihihihihihihihihihihihihihihhihihihihihihihhiihihihihihiihihiihihihihihihihihihihihihihihihihiihihihihihiihihihihihihihihihiihihihihiihiihihihihiihihihihihiihihihihihiihhiihihihiihihihihihiihihihihhiihhiihiihihihihihihihihihihihiihhiiihhiihhiihihihihihihihiihihih
MDA = DAE = AEM = 90
=> ADME là hcn
Tam giác ABC vuông cân tại A
=> ACB = ABC = 45
mà MEC = 90
=> Tam giác EMC vuông cân tại E
=> EM = EC
mà DM = AE (ADME là hcn)
=> EM + DM = EC + AE = AC = 4 (cm)
PADME = 2 . (EM + DM) = 2 . 4 = 8 (cm)
DE = AM (ADME là hcn)
=> DE nhỏ nhất
<=> AM nhỏ nhất
<=> AM _I_ BC tại M
mà tam giác ABC vuông cân tại A
=> AM là đường trung tuyến
=> M là trung điểm
Vậy DE nhỏ nhất <=> M là trung điểm của BC.
Xét tứ giác ADME, ta có:
∠ A = 90 0 (gt)
MD ⊥ AB (gt)
⇒ ∠ (MDA ) = 90 0
ME ⊥ AC (gt)
⇒ ∠ (MEA ) = 90 0
Suy ra tứ giác ADME là hình chữ nhật ( vì có ba góc vuông)
⇒ AM = DE ( tính chất hình chữ nhật)