Cho hai số x,y thõa mãn phương trình: \(3x^2+4y^2-4xy-6x+4y=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKĐB $\Leftrightarrow (x^2+4y^2-4xy)+8x=5$
$\Leftrightarrow (x-2y)^2+8x=5$.
Đặt $x-2y=a; x=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+8b=5$. Tìm max của $B=-2a+8b$
Áp dụng BĐT AM-GM:
$a^2+1\geq 2\sqrt{a^2}=2|a|\geq -2a$
$\Rightarrow a^2+1\geq -2a$
$\Rightarrow a^2+8b+1\geq -2a+8b$
$\Leftrightarrow 6\geq B$. Vậy $B_{\max}=6$
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Ta có:
\(3x^2-6x+4y^2-4xy+4y+3=0\)
\(\Leftrightarrow x^2-4xy+4y^2-2x+4y+1+2x^2-4x+2=0\)
\(\Leftrightarrow\left(x-2y\right)^2-2\left(x-2y\right)+1+2\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x-2y-1\right)^2+2\left(x-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y-1=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Vậy ...
Ta có: \(x^2+4y^2+x=4xy+2y+2\)
\(\Rightarrow x^2-4xy+4y^2+x-2y=2\)
\(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)
\(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\)
Tìm các TH
Mặt khác : \(4x^2+4xy+y^2=2x+y+56\)
\(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)
\(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)
Tìm các TH