K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 3 2022

Với đa thức hệ số nguyên, xét 2 số nguyên m, n bất kì, ta có:

\(f\left(m\right)-f\left(n\right)=am^3+bm^2+cm+d-an^3-bn^2-cn-d\)

\(=a\left(m^3-n^3\right)+b\left(m^2-n^2\right)+c\left(m-n\right)\)

\(=a\left(m-n\right)\left(m^2+n^2+mn\right)+b\left(m-n\right)\left(m+n\right)+c\left(m-n\right)\)

\(=\left(m-n\right)\left[a\left(m^2+n^2+mn\right)+b\left(m+n\right)+c\right]⋮\left(m-n\right)\)

\(\Rightarrow f\left(m\right)-f\left(n\right)⋮m-n\) với mọi m, n nguyên

Giả sử tồn tại đồng thời \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

Theo cmt, ta phải có: \(f\left(7\right)-f\left(3\right)⋮7-3\Leftrightarrow53-35⋮4\Rightarrow18⋮4\) (vô lý)

Vậy điều giả sử là sai hay không thể đồng thời tồn tại \(f\left(7\right)=53\) và \(f\left(3\right)=35\)

23 tháng 3 2022

em cảm ơn thầy

NV
16 tháng 4 2021

Giả sử đa thức \(f\left(x\right)-2022\) có nghiệm nguyên \(x=a\)

\(\Rightarrow f\left(x\right)-2022=\left(x-a\right).g\left(x\right)\) với \(g\left(x\right)\) là đa thức nhận giá trị nguyên khi x nguyên

\(\Rightarrow f\left(x\right)=\left(x-a\right).g\left(x\right)+2022\) (1)

Lại có với a nguyên thì \(\left(2020-a\right)-\left(2019-a\right)=1\) lẻ nên 2020-a và 2019-a luôn khác tính chẵn lẻ

\(\Rightarrow\left(2019-a\right)\left(2020-a\right)\) luôn chẵn

Lần lượt thay \(x=2020\) và \(x=2019\) vào (1) ta được:

\(f\left(2019\right)=\left(2019-a\right).g\left(2019\right)+2022\)

\(f\left(2020\right)=\left(2020-a\right).g\left(2020\right)+2022\)

Nhân vế với vế:

\(f\left(2019\right).f\left(2020\right)=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)

\(\Leftrightarrow2021=\left(2019-a\right)\left(2020-a\right).g\left(2019\right).g\left(2020\right)+2022\left[\left(2019-a\right)g\left(2019\right)+\left(2020-a\right).g\left(2020\right)+2022\right]\)

Do \(\left(2019-a\right)\left(2020-a\right)g\left(2019\right).g\left(2020\right)\) chẵn \(\Rightarrow\) vế phải chẵn

Mà vế trái lẻ \(\Rightarrow\) vô lý

Vậy điều giả sử là sai hay đa thức đã cho không có nghiệm nguyên

3 tháng 10 2021

MN lm đc câu a mk mừng rơi nước mắt lun

4 tháng 10 2021

a) Đặt f(x)=c_1.x^n + c_2.x^(n - 1) + ... + c_(n - 1).x^2 + c_n.x

Ta có:
a^n − b^n

= (a−b).(a^(n−1) + a^(n−2).b + ... + b^(n−1))

⇒f(a) − f(b) = (a − b).P(a, b) với P(a, b) là 1 đa thức chứa a, b với hệ số nguyên
Suy ra f(a) - f(b) chia hết cho (a - b)

5 tháng 5 2018

Ta có : \(f(7)=a\cdot7^3+2\cdot b\cdot7^2+3\cdot c\cdot7+4d=343a+98b+21c+4d\)

Lại có : \(f(3)=a\cdot3^3+2\cdot b\cdot3^2+3\cdot c\cdot3+4d=27a+18b+9c+4d\)

Giả sử phản chứng nếu \(f(7)\)và \(f(3)\)đồng thời bằng 73 và 58 suy ra là :

\(f(7)-f(3)=(343a-27a)+(98b-18b)+(21c-9c)+(4d-4d)=73-58=15\)

\(\Rightarrow f(7)-f(3)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(f(7)-f(3)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

=> đpcm

28 tháng 12 2017

Giả sử phương trình f(x) = 0 có nghiệm nguyên x = a. Khi đó f(x) = (x - a).g(x)

Vậy thì f(0) = -a.g(x)   ; f(1) = (1 - a).g(x) ; f(2) = (2 - a).g(x);    f(3) = (3 - a).g(x) ; f(4) = (4 - a).g(x) ; 

Suy ra f(0).f(1).f(2).f(3).f(4) = -a.(1-a)(2-a)(3-a)(4-a).g5(x)

VT không chia hết cho 5 nhưng VP lại chia hết cho 5 (Vì -a.(1-a)(2-a)(3-a)(4-a) là tích 5 số nguyên liên tiếp nên chia hết cho 5)

Vậy giả sử vô lý hay phương trình f(x) = 0 không có nghiệm nguyên.