Xác định m để y = x3/3 + (m-2)x2 - (m+1)x +2 +3m nghịch biến trên (-5,1) và (-2,4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập xác định: D = R \ {m}
Hàm số đồng biến trên từng khoảng ( - ∞ ; m), (m; + ∞ ) khi và chỉ khi:
⇔ − m 2 + 4 > 0
⇔ m 2 < 4 ⇔ −2 < m < 2
c) Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′ = −3 x 2 + 2mx – 3 ≤ 0
⇔ y′ = m 2 – 9 ≤ 0
⇔ m 2 ≤ 9 ⇔ −3 ≤ m ≤ 3
Tập xác định: D = R
Hàm số nghịch biến trên R khi và chỉ khi:
y′ = −3 x 2 + 2mx – 3 ≤ 0
⇔ y′ = m 2 – 9 ≤ 0
⇔ m 2 ≤ 9 ⇔ −3 ≤ m ≤ 3
a.
Hàm số nghịch biến khi \(x< 0\Rightarrow-3m-2>0\Rightarrow m< -\dfrac{2}{3}\)
b.
Do \(a=m^2-2m+3=\left(m-1\right)^2+2>0;\forall m\)
\(\Rightarrow\) Hàm đồng biến khi \(x>0\) và nghịch biến khi \(x< 0\)
c.
Hàm đồng biến khi \(x>0\Rightarrow2m+3>0\)
\(\Rightarrow m>-\dfrac{3}{2}\)
Chọn D.
Tập xác định: D = ℝ
Ta có
Xét m = 1, ta có y' = -3 < 0 ∀ x ∈ ℝ nên nghịch biến trên tập xác định.
Xét m ≠ 1 Để hàm số trên nghịch biến trên tập xác định khi và chỉ khi
Vậy với - 2 7 ≤ m ≤ 1 thì hàm số y = ( m - 1 ) x 3 + ( m - 1 ) x 2 - ( 2 m + 1 ) + 5 nghịch biến trên tập xác định.
Đáp án: D.
⇔ ∆ ′ = 2m + 5 ≤ 0
dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)
và (2; + ∞ ) khi m ≤ −5/2.
Đáp án D
Với y = ( m - 2 ) x 3 + ( m - 2 ) x 2 - x + 1 ta có y ' = 3 ( m - 2 ) x 2 + 2 ( m - 2 ) x - 1
Hàm số đã cho nghịch biến trên R
⇔ m - 2 < 0 ∆ ' ≤ 0 ⇔ m < 2 m 2 - m - 2 ≤ 0 ⇔ m < 2 - 1 ≤ m ≤ 2 ⇔ 1 ≤ m ≤ 2
Lời giải:
$y'=f'(x)=x^2+2(m-2)x-(m+1)$
$\Delta'=(m-2)^2+(m+1)=m^2-3m+5>0$ với mọi $m\in\mathbb{R}$ nên $f'(x)=0$ luôn có 2 nghiệm phân biệt $x_1,x_2$. Ta có bảng BT của $f(x)$ (trường hợp $a=\frac{1}{3}>0$:
Để $f(x)$ nghịch biến trên $(-5;1)$ và $(-2;4)$ thì $x_1\leq -5$ và $x_2\geq 4$
\(\Leftrightarrow \left\{\begin{matrix} (x_1+5)(x_2+5)\leq 0\\ (x_1-4)(x_2-4)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2+5(x_1+x_2)+25\leq 0\\ x_1x_2-4(x_1+x_2)+16\geq 0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -(m+1)+10(2-m)+25\leq 0\\ -(m+1)-8(2-m)+16\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -11m+44\leq 0\\ 7m-1\geq 0\end{matrix}\right.\Leftrightarrow 4\leq m\leq \frac{1}{7}\) (vô lý)
\(y'=f\left(x\right)=x^2+2\left(m-2\right)x-m-1\)
Để hàm nghịch biến trên các khoảng đã cho
\(\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le-5< 4\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-5\right)\le0\\f\left(4\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}24-10\left(m-2\right)-m\le0\\15+8\left(m-2\right)-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge4\\m\le\frac{1}{7}\end{matrix}\right.\) không tồn tại m thỏa mãn