K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

$y'=f'(x)=x^2+2(m-2)x-(m+1)$

$\Delta'=(m-2)^2+(m+1)=m^2-3m+5>0$ với mọi $m\in\mathbb{R}$ nên $f'(x)=0$ luôn có 2 nghiệm phân biệt $x_1,x_2$. Ta có bảng BT của $f(x)$ (trường hợp $a=\frac{1}{3}>0$:

Để $f(x)$ nghịch biến trên $(-5;1)$ và $(-2;4)$ thì $x_1\leq -5$ và $x_2\geq 4$

\(\Leftrightarrow \left\{\begin{matrix} (x_1+5)(x_2+5)\leq 0\\ (x_1-4)(x_2-4)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2+5(x_1+x_2)+25\leq 0\\ x_1x_2-4(x_1+x_2)+16\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -(m+1)+10(2-m)+25\leq 0\\ -(m+1)-8(2-m)+16\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -11m+44\leq 0\\ 7m-1\geq 0\end{matrix}\right.\Leftrightarrow 4\leq m\leq \frac{1}{7}\) (vô lý)

 

NV
12 tháng 8 2020

\(y'=f\left(x\right)=x^2+2\left(m-2\right)x-m-1\)

Để hàm nghịch biến trên các khoảng đã cho

\(\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le-5< 4\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-5\right)\le0\\f\left(4\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}24-10\left(m-2\right)-m\le0\\15+8\left(m-2\right)-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge4\\m\le\frac{1}{7}\end{matrix}\right.\) không tồn tại m thỏa mãn

14 tháng 11 2019

a) Tập xác định: D = R \ {m}

Hàm số đồng biến trên từng khoảng ( - ∞ ; m), (m;  + ∞ ) khi và chỉ khi:


⇔ − m 2  + 4 > 0

⇔  m 2  < 4 ⇔ −2 < m < 2

c) Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′ = −3 x 2  + 2mx – 3 ≤ 0

⇔ y′ =  m 2  – 9 ≤ 0

⇔  m 2  ≤ 9 ⇔ −3 ≤ m ≤ 3

22 tháng 6 2019

Tập xác định: D = R

Hàm số nghịch biến trên R khi và chỉ khi:

y′ = −3 x 2  + 2mx – 3 ≤ 0

⇔ y′ =  m 2  – 9  ≤  0

⇔  m 2   ≤ 9 ⇔ −3  ≤  m  ≤  3

19 tháng 11 2018

Chọn D.

Tập xác định: D =  ℝ

Ta có

Xét m = 1, ta có y' = -3 < 0 ∀ x ∈ ℝ  nên nghịch biến trên tập xác định.

Xét m ≠ 1 Để hàm số trên nghịch biến trên tập xác định khi và chỉ khi 

Vậy với  - 2 7 ≤ m ≤ 1 thì hàm số y =  ( m - 1 ) x 3 + ( m - 1 ) x 2 - ( 2 m + 1 ) + 5  nghịch biến trên tập xác định.

16 tháng 8 2019

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

⇔ ∆ ′ = 2m + 5  ≤  0

dấu “=” xảy ra nhiều nhất tại hai điểm, nên hàm số nghịch biến trên các khoảng (- ∞ ; 2)

và (2; + ∞ ) khi m  ≤  −5/2.

13 tháng 12 2017

a) y = –( m 2  + 5m) x 3  + 6m x 2  + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +) m2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

Δ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m ≤ 0 ⇔ –5/3 ≤ m ≤ 0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3 ≤ m ≤ 0 thì hàm số đồng biến trên R.

b) Nếu hàm số đạt cực đại tại x = 1 thì y’(1) = 0. Khi đó:

y′(1) = –3 m 2  – 3m + 6 = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Mặt khác, y” = –6( m 2  + 5m)x + 12m

    +) Với m = 1 thì y’’ = -36x + 12. Khi đó, y’’(1) = -24 < 0 , hàm số đạt cực đại tại x = 1.

    +) Với m = -2 thì y’’ = 36x – 24. Khi đó, y’’(1) = 12 > 0, hàm số đạt cực tiểu tại x = 1.

 

Vậy với m = 1 thì hàm số đạt cực đại tại x = 1.

31 tháng 7 2018

y = –( m 2  + 5m) x 3  + 6m x 2 + 6x – 5

y′ = –3( m 2  + 5m) x 2  + 12mx + 6

Hàm số đơn điệu trên R khi và chỉ khi y’ không đổi dấu.

Ta xét các trường hợp:

    +)  m 2 + 5m = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

– Với m = 0 thì y’ = 6 nên hàm số luôn đồng biến.

– Với m = -5 thì y’ = -60x + 6 đổi dấu khi x đi qua .

    +) Với  m 2  + 5m ≠ 0. Khi đó, y’ không đổi dấu nếu

∆ ' = 36 m 2  + 18( m 2  + 5m) ≤ 0 ⇔ 3 m 2  + 5m  ≤  0 ⇔ –5/3  ≤  m  ≤  0

– Với điều kiện đó, ta có –3( m 2  + 5m) > 0 nên y’ > 0 và do đó hàm số đồng biến trên R.

Vậy với điều kiện –5/3  ≤  m  ≤  0 thì hàm số đồng biến trên R.

NV
20 tháng 7 2021

\(y'=3x^2-6mx\)

Hàm nghịch biến trên \(\left(0;1\right)\) khi với mọi \(x\in\left(0;1\right)\) ta có:

\(3x^2-6mx\le0\)

\(\Leftrightarrow3x\left(x-2m\right)\le0\)

\(\Leftrightarrow x-2m\le0\)

\(\Leftrightarrow m\ge\max\limits_{\left(0;1\right)}\dfrac{x}{2}\Rightarrow m\ge\dfrac{1}{2}\)

NV
8 tháng 7 2021

\(y'=-x^2-2\left(m-2\right)x+m-2\)

Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)

\(\Leftrightarrow1\le m\le2\)