K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BHCD có

BH//CD
BD//CH

=>BHCD là hình bình hành

b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có

góc KAB chung

=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC

=>AK*AC=AB*AI; AK/AB=AI/AC

c: Xét ΔAKI và ΔABC có

AK/AB=AI/AC

góc KAI chung

=>ΔAKI đồng dạng với ΔABC

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: Xét ΔABK vuông tại K và ΔACI vuông tại I có

góc BAK chung

Do đó: ΔABK\(\sim\)ΔACI

Suy ra: AB/AC=AK/AI

hay \(AB\cdot AI=AK\cdot AC\)

c: Xét ΔAIK và ΔACB có

AI/AC=AK/AB

góc A chung

Do đó: ΔAIK\(\sim\)ΔACB

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900;K^=I^=900;ˆAA^ chung) (3)

⇒ ˆACI=ˆABKACI^=ABK^

⇒ 900−ˆACI=900−ˆABK900−ACI^=900−ABK^

⇒ ˆHCD=ˆHBDHCD^=HBD^ (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆAKHI^=3600−A^−HKA−^HIA^=1800−A^

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆDKHI^=D^ (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AIAK=ACABAIAK=ACAB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi

nó bị lỗi mk gửi lại 

a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900,ˆAA^ chung) (3)

⇒ ˆACI=ˆABK

⇒ 900−ˆACI=900−ˆABK

⇒ ˆHCD=ˆHBD (1)

xét tứ giác AKHI có

ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆA

tương tự ˆD=1800−ˆAD^=1800−A^

⇒ ˆKHI=ˆD (2)

từ (1) và (2) ⇒ BHCD là hình bình hành

b) từ (3) ⇒ AI/AK=AC/AB (4)

⇒ AI.AB = AK.AC

c) xét △AKI và △ABC có

ˆAA^ chung; (4)

⇒ △AKI ~ △ABC (c-g-c)

d) gọi K là giao của DH và BC

vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC

⇒ BDCH là hình thoi

⇒ KC = KB

⇒ △ ABK = △ ACK (c-g-c)

⇒ △ ABC cân tại A

vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi

a: Xét tứ giác BHCD có 

CH//BD

BH//CD

Do đó: BHCD là hình bình hành

b: Xét ΔAIC vuông tại I và ΔAKB vuông tại K có 

\(\widehat{A}\) chung

Do đó: ΔAIC\(\sim\)ΔAKB

Suy ra: \(\dfrac{AI}{AK}=\dfrac{AC}{AB}\)

hay \(AI\cdot AB=AK\cdot AC\)

a: Xét tứ giác BHCD có

BH//CD

BD//CH
Do đó: BHCD là hình bình hành

b: Xét ΔAKB vuông tại K và ΔAIC vuông tai I có

góc KAB chung

Do đó: ΔAKB đồng dạng với ΔAIC

Suy ra: AK/AI=AB/AC
hay AK/AB=AI/AC: \(AK\cdot AC=AB\cdot AI\)

c: Xét ΔAKI và ΔABC có

AK/AB=AI/AC
góc A chung

Do đó: ΔAKI đồng dạng với ΔABC