Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
b: Xét ΔAKB vuông tại K và ΔAIC vuông tại I có
góc KAB chung
=>ΔAKB đồng dạng với ΔAIC
=>AK/AI=AB/AC
=>AK*AC=AB*AI; AK/AB=AI/AC
c: Xét ΔAKI và ΔABC có
AK/AB=AI/AC
góc KAI chung
=>ΔAKI đồng dạng với ΔABC
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Xét ΔAKB vuông tại K và ΔAIC vuông tai I có
góc KAB chung
Do đó: ΔAKB đồng dạng với ΔAIC
Suy ra: AK/AI=AB/AC
hay AK/AB=AI/AC: \(AK\cdot AC=AB\cdot AI\)
c: Xét ΔAKI và ΔABC có
AK/AB=AI/AC
góc A chung
Do đó: ΔAKI đồng dạng với ΔABC
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Xét ΔABK vuông tại K và ΔACI vuông tại I có
góc BAK chung
Do đó: ΔABK\(\sim\)ΔACI
Suy ra: AB/AC=AK/AI
hay \(AB\cdot AI=AK\cdot AC\)
c: Xét ΔAIK và ΔACB có
AI/AC=AK/AB
góc A chung
Do đó: ΔAIK\(\sim\)ΔACB
a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900;K^=I^=900;ˆAA^ chung) (3)
⇒ ˆACI=ˆABKACI^=ABK^
⇒ 900−ˆACI=900−ˆABK900−ACI^=900−ABK^
⇒ ˆHCD=ˆHBDHCD^=HBD^ (1)
xét tứ giác AKHI có
ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆAKHI^=3600−A^−HKA−^HIA^=1800−A^
tương tự ˆD=1800−ˆAD^=1800−A^
⇒ ˆKHI=ˆDKHI^=D^ (2)
từ (1) và (2) ⇒ BHCD là hình bình hành
b) từ (3) ⇒ AIAK=ACABAIAK=ACAB (4)
⇒ AI.AB = AK.AC
c) xét △AKI và △ABC có
ˆAA^ chung; (4)
⇒ △AKI ~ △ABC (c-g-c)
d) gọi K là giao của DH và BC
vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC
⇒ BDCH là hình thoi
⇒ KC = KB
⇒ △ ABK = △ ACK (c-g-c)
⇒ △ ABC cân tại A
vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi
nó bị lỗi mk gửi lại
a) △ AKB ~ △AIC (g - g) ( ˆK=ˆI=900,ˆAA^ chung) (3)
⇒ ˆACI=ˆABK
⇒ 900−ˆACI=900−ˆABK
⇒ ˆHCD=ˆHBD (1)
xét tứ giác AKHI có
ˆKHI=3600−ˆA−ˆHKA−ˆHIA=1800−ˆA
tương tự ˆD=1800−ˆAD^=1800−A^
⇒ ˆKHI=ˆD (2)
từ (1) và (2) ⇒ BHCD là hình bình hành
b) từ (3) ⇒ AI/AK=AC/AB (4)
⇒ AI.AB = AK.AC
c) xét △AKI và △ABC có
ˆAA^ chung; (4)
⇒ △AKI ~ △ABC (c-g-c)
d) gọi K là giao của DH và BC
vì A,D,H thăng hàng và H là trực tâm nên AD ⊥ BC hay HD ⊥ BC
⇒ BDCH là hình thoi
⇒ KC = KB
⇒ △ ABK = △ ACK (c-g-c)
⇒ △ ABC cân tại A
vậy △ ABC cân tại A thì DH đi qua A và BHCD là hình thoi
1: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của đường chéo BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
1: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M