Cho tam giác ABC vuông tại A có góc C bằng 30 độ vẽ AH vuông góc với BC trên tia đối của tia ha lấy điểm D sao cho HD = HD Trên tia HC lấy điểm E sao cho he = HB Chứng minh AE + CD lớn hơn BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét t/g AHC và t/g DHC có:
AH = DH (gt)
góc AHC = góc DHC = 90 độ
HC chung
=> t/g AHC = t/g DHC (c.g.c) (đpcm)
b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82
=> AC = 8 (cm)
c, Xét t/g AHB và t/g DHE có:
AH = DH (gt)
góc AHB = góc DHE (đối đỉnh)
BH = EH (gt)
=> t/g AHB = t/g DHE (c.g.c) (đpcm)
=> góc HBA = góc DEH (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // DE
Mà AB _|_ AC
=> DE _|_ AC (đpcm)
d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)
Xét t/g AHB và t/g AHE có:
BH = BE (gt)
góc AHB = góc AHE = 90 độ
AH chung
=> t/g AHB = t/g AHE (c.g.c)
=> AB = AE (2 cạnh tương ứng) (2)
Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)
Từ (1),(2),(3) => AE + CD > BC (đpcm)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
Vẽ nháp bằng tay, hình không đẹp cho lắm :v Bài viết có hơi lỗi.
Bài toán phụ : Chứng minh tam giác vuông có 1 góc 60 độ thì cạnh góc vuông nhỏ hơn sẽ bằng 1 nửa cạnh huyền.
Tam giác MNP vuông tại M có góc N là 60 độ.
Trên tia đối tia MN lấy điểm Q sao cho MQ=MN
Tam giác NPQ có PM vừa là trung tuyến vừa là đường cao nên cân tại P, mà lại có 1 góc 60 độ nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều), từ đó suy ra NQ = NP, mà NQ= 2MN nên MN = \(\frac{1}{2}\)NP, bài toán được chứng minh.
Tương tự với bài toán của chúng ta :
\(\Delta ABC\)vuông tại Acó \(\widehat{B}=60^o\) \(\Rightarrow AB=\frac{1}{2}BC\)
\(\Delta ABH\)vuông tại H có \(\widehat{B}=60^o\) \(\Rightarrow HB=\frac{1}{2}AB\)
\(\Rightarrow HB=\frac{1}{4}BC\)
Trước hết \(\Delta ABH\) vuông tại H có \(\widehat{B}=60^o\)
nên \(\widehat{HAB}=90^o-60^o=30^o\)Mà \(\widehat{DAH}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{DAH}=60^o\)
\(\Delta DAH\)cân tại A ( AD = AH ), có góc DAH là 60o nên là tam giác đều ( Dấu hiệu nhận biết tam giác đều )
Như vậy AI là đường cao đồng thời cũng là phân giác góc DAH
\(\Rightarrow\widehat{IAH}=\frac{1}{2}\widehat{DAH}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\widehat{KAB}=\widehat{IAH}+\widehat{HAB}=30^o+30^o=60^o\)
\(\Delta KAB\)có \(\widehat{KAB}=\widehat{KBA}=60^o\) nên là tam giác đều
\(\Rightarrow KB=AB\)
Mà \(HB=\frac{1}{2}AB\Rightarrow HB=\frac{1}{2}KB\), hay H là trung điểm của KB.
Vậy ....
a) \(\Delta\)ABC: ^A=900 => AB2+AC2=BC2 <=> BC2-AB2=AC2 (1)
Thay AB=6cm, BC=10cm vào (1), ta có: 102-62=AC2 => 100-36=AC2
=> AC2=64 (cm) => AC2=82 => AC=8 (cm).
b) Ta có: AH \(⊥\)BC hay AH \(⊥\)BD. Mà HB=HD => AH là đường trung trực của BD
=> AB=AD (Tính chất đường trung trực của đoạn thẳng) (đpcm)
c) Nối E với D.
Xét \(\Delta\)AHB và \(\Delta\)EHD:
HB=HD
^AHB=^EHD=900 => \(\Delta\)AHB=\(\Delta\)EHD (c.g.c)
HA=HE
=> ^HBA=^HDE (2 góc tương ứng) . Mà 2 góc này ở vị trí so le trong =>AB//ED
Mặt khác: AB \(⊥\)AC => ED \(⊥\)AC (Quan hệ song song, vuông góc)
Xét \(\Delta\)AEC: CH \(⊥\)AE, ED \(⊥\)AC => D là trực tâm của \(\Delta\) AEC
=> AD \(⊥\)EC (đpcm)
a) Áp dụng định lý Py-ta-go vào \(\Delta ABC\) vuông tại A
BC2 = AB2 + AC2
102 = 62 + AC2
=> AC2 = 100 - 36 = 64
=> AC =8
a) Xét ΔBHA vuông tại H và ΔBHD vuông tại H có
BH chung
AH=DH(gt)
Do đó: ΔBHA=ΔBHD(hai cạnh góc vuông)
b) Xét ΔHBA vuông tại H và ΔHKD vuông tại H có
HB=HK(gt)
HA=HD(gt)
Do đó: ΔHBA=ΔHKD(hai cạnh góc vuông)
⇒\(\widehat{HBA}=\widehat{HKD}\)(hai góc tương ứng)
mà \(\widehat{HBA}\) và \(\widehat{HKD}\) là hai góc ở vị trí so le trong
nên AB//DK(Dấu hiệu nhận biết hai đường thắng song song)
c) Ta có: AB//DK(cmt)
AB⊥AC(ΔABC vuông tại A)
Do đó: DK⊥AC
Xét ΔDAK có
KH là đường cao ứng với cạnh AD(KH⊥AD)
AC là đường cao ứng với cạnh DK(AC⊥DK)
KH\(\cap\)AC={C}
Do đó: C là trực tâm của ΔDAK(Tính chất ba đường cao của tam giác)
⇒DC⊥AK(đpcm)
a)áp dụng định lý Py-Ta-Go cho ΔABC vuông tại A
ta có:
BC2=AB2+AC2
BC2=62+82
BC2=36+64=100
⇒BC=\(\sqrt{100}\)=10
vậy BC=10
AB và AC không bằng nhau nên không chứng minh được bạn ơi
còn ED và AC cũng không vuông góc nên không chứng minh được luôn
Xin bạn đừng ném đá