Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
a, Xét t/g AHC và t/g DHC có:
AH = DH (gt)
góc AHC = góc DHC = 90 độ
HC chung
=> t/g AHC = t/g DHC (c.g.c) (đpcm)
b, Áp dụng định lí pytago vào t/g ABC vuông tại A ta có:
AB2 + AC2 = BC2
=> AC2 = BC2 - AB2 = 102 - 62 = 64 = 82
=> AC = 8 (cm)
c, Xét t/g AHB và t/g DHE có:
AH = DH (gt)
góc AHB = góc DHE (đối đỉnh)
BH = EH (gt)
=> t/g AHB = t/g DHE (c.g.c) (đpcm)
=> góc HBA = góc DEH (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> AB // DE
Mà AB _|_ AC
=> DE _|_ AC (đpcm)
d, Vì t/g AHC = t/g DHC (câu a) => AC = CD (2 cạnh tương ứng) (1)
Xét t/g AHB và t/g AHE có:
BH = BE (gt)
góc AHB = góc AHE = 90 độ
AH chung
=> t/g AHB = t/g AHE (c.g.c)
=> AB = AE (2 cạnh tương ứng) (2)
Xét t/g ABC có: AB + AC > BC (BĐT tam giác) (3)
Từ (1),(2),(3) => AE + CD > BC (đpcm)
Áp dụng đ/lí Py ta go cho tam giác ABC vuông ở A ta có:
BC2 = AB2 + AC2
BC2 = 62 + 82
= 100
=> BC = \(\sqrt{100}=10\left(Cm\right)\)
b) Xét tam giác DAH và tam giác BAH có:
AH chung
HD = HB
Góc H1 = góc H2
Vậy tam giác DAH = tam giác BAH
=> AD = AB (2 cạnh tương ứng)
A)
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, ta có:
\(BC=\sqrt{AB^2+AC^2}\)
\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
b)
Xét hai tam giác vuông AHB và AHD, có:
AH là cạch chung
HB=HD (gt)
Vậy hai tam giác đó bằng nhau(c.g.c)
=> AB=AD ( hai cạnh tương ứng)
c)Xét tứ giác ABDE có
AH vuông góc BD
và AE cắt BD tại trung điểm mỗi đường
=> tứ giác ABDE là hình thoi
=> AB //DE
mà AB vuông góc AC
=> DE cũng vuông góc AC
d)
Chắc do tính chất 2 đường chéo hình thoi