Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, vẽ đường thẳng vuông góc với BC cắt các đường thẳng AB, AC lần lượt tại N và M. gọi H và K lần lượt là trung điểm của BC và MN. Chứng minh rằng tứ giác AKDG là hình chữ nhật
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I và O là tâm các hình chữ nhật BDEH và CDFK
Ta có: góc B1 = góc D1 và góc C1 = góc D2 ( t/c hình chữ nhật )
mà góc B1 = góc C1 (gt) nên góc B1 = góc D1 = góc C1 = góc D2
Do đó \(BE//DK\) và \(DH//CA\)
=> AIDO là hình bình hành nên AO = ID; mà HI = ID ( t/c hcn )
Do đó AO = HI; ta lại có \(AO//HI\)
=> AOIH là hình bình hành nên AH // IO và AH = IO (1)
- CM tương tự, AIOK là hình bình hành nên AK // IO và AK = IO (2)
- Từ (1) và (2) suy ra H,A,K thẳng hàng và AH = AK
=> Kết luận...
Bạn oy, A là trung điểm của HK sao lại GH được?
Bạn vẽ hình ra thử đi . Nếu là HK thì là đường gấp khúc .