Tìm các cặp số nguyên (x, y) sao cho 2x – 5y + 5xy = 14.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-5y+5xy=14\)
\(\Leftrightarrow2x-2+5y\left(x-1\right)=12\)
\(\Leftrightarrow\left(x-1\right)\left(5y+2\right)=12\)
mà \(x,y\)nguyên nên \(5y+2\)chia cho \(5\)dư \(2\).
Ta có bảng giá trị:
5y+2 | -3 | 2 | 12 |
x-1 | -4 | 6 | 1 |
y | -1 | 0 | 2 |
x | -3 | 7 | 2 |
Vậy phương trình có các nghiệm là: \(\left(-3,-1\right),\left(7,0\right),\left(2,2\right)\).
TA có:
\(2x-5y+5xy=9\)
\(\Rightarrow2x-5y\left(1-x\right)=9\)
\(\Rightarrow2-\left[2x-5y\left(1-x\right)\right]=2-9\)
\(\Rightarrow2-2x+5y\left(1-x\right)=-7\)
\(\Rightarrow2\left(1-x\right)+5y\left(1-x\right)=-7\)
\(\Rightarrow\left(2+5y\right)\left(1-x\right)=-7\)
\(\Rightarrow\left(2+5y\right);\left(1-x\right)\in U\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng chọn gt sau:
\(2+5y\) | -7 | -1 | 1 | 7 |
\(1-x\) | 1 | 7 | -7 | -1 |
\(y\) | -9/5 | -3/5 | -1/5 | 1 |
\(x\) | 0 | 6 | 8 | 2 |
KL | Loại | Loại | Loại | Chọn |
Vậy \(x=2;y=1\)
x - 5y + 5xy = 14
2x + 5y( x - 1) =14
2x - 2 + 5y(x - 1) = 12
2(x-1) + 5(x - 1) = 12
(x - 1).( 2 + 5y) = 12
x, y thuộc Z nên xét các trường hợp, ta có:
x = 2; y = 2; x = 7; y = 0
cho mk nha!!!
x-5y+5xy=14
2x+5y(x-1)=14
2x-2+5y(x-1)=12
2(x-1)+5y(x-1)=12
(x-1).(2+5y)=12
x,y thuộc Z nên xét các trường hợp,ta có:
x=2,y=2;x=7,y=0
\(2x-5y+5xy=14\)
\(\Rightarrow x\left(2+5y\right)-5y=14\)
\(\Rightarrow x\left(2+5y\right)-\left(5y+2\right)=12\)
\(\Rightarrow\left(x-1\right)\left(5y+2\right)=12\)
Ta có bảng sau:
...
<=> 5xy-5y=14-2x
<=> 5y(x-1)=-2(x-7)
=> 5y=\(\frac{-\left(2x-14\right)}{x-1}=-\frac{2x-2-12}{x-1}=-\frac{2\left(x-1\right)}{x-1}+\frac{12}{x-1}=-2+\frac{12}{x-1}\)
=> \(5y=-2+\frac{12}{x-1}\)
Để 5y là số nguyên => 12 chia hết cho (x-1) => x-1={-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
+/ x-1=-12 => x=-11; y=-3/5 (loại)
+/ x-1=-6 => x=-5; y=-4/5 (loại)
+/ x-1=-4 => x=-3; y=-1
+/ x-1=-3 => x=-2; y=-6/5 (loại)
+/ x-1=-2 => x=-1; y=-8/5 (loại)
+/ x-1=-1 => x=0; y=-14/5 (loại)
+/ x-1=1 => x=2; y=2
+/ x-1=2 => x=3; y=4/5 (loại)
+/ x-1=3 => x=4; y=2/5 (loại)
+/ x-1=4 => x=5; y=1/5 (loại)
+/ x-1=6 => x=7; y=0
+/ x-1=12 => x=13; y=-1/5 (loại)
=> Các cặp số x, y thỏa mãn là: (-3; -1); (2; 2); (7; 0)
\(xy+2x-5y=13\\ \Rightarrow x\left(y+2\right)-5y-10=3\\ \Rightarrow x\left(y+2\right)-5\left(y+2\right)=3\\ \Rightarrow\left(x-5\right)\left(y+2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)
\(x-5\) | 3 | 1 | -3 | -1 |
\(y+2\) | 1 | 3 | -1 | -3 |
\(x\) | 8 | 6 | 2 | 4 |
\(y\) | -1 | 1 | -3 | -5 |
Vậy \(\left(x;y\right)=\left(8;-1\right);\left(6;1\right);\left(2;-3\right);\left(4;-5\right)\)
\(2x-5y+5xy=14\)
\(\Leftrightarrow2x-2-5y+5xy=14-2\)
\(\Leftrightarrow\left(2x-2\right)-\left(5y-5xy\right)=12\)
\(\Leftrightarrow2.\left(x-1\right)-5y.\left(1-x\right)=12\)
\(\Leftrightarrow2.\left(x-1\right)+5y.\left(x-1\right)=12\)
\(\Leftrightarrow\left(x-1\right).\left(2+5y\right)=12\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-1\in Z\\2+5y\in Z\end{matrix}\right.\)
\(\Rightarrow x-1\inƯC\left(12\right);2+5y\inƯC\left(12\right).\)
\(\Rightarrow x-1\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\};2+5y\in\left\{1;2;3;4;6;12;-1;-2;-3;-4;-6;-12\right\}.\)
Đến đoạn này bạn tự lập bảng để tính nhé, cái nào là số nguyên thì chọn.
Chúc bạn học tốt!
cảm ơn bạn nhiều