Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy+3x-2y=11
\(\Rightarrow x.\left(y+3\right)-2.\left(y+3\right)=17\)
\(\Rightarrow\left(x-2\right).\left(y+3\right)=17\)
\(\Rightarrow17⋮x-2\)
\(\Rightarrow x-2\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
+)Ta có bảng:
x-2 | -1 | 1 | -7 | 7 |
y+3 | -7 | 7 | -1 | 1 |
x | 1\(\in Z\) | 3\(\in Z\) | -5\(\in Z\) | 9\(\in Z\) |
y | -10\(\in Z\) | 4\(\in Z\) | -4\(\in Z\) | -2\(\in Z\) |
Vậy \(\left(x,y\right)\in\left\{\left(1;-10\right);\left(3;4\right);\left(-5;-4\right);\left(9;-2\right)\right\}\)
Chúc bn học tốt
Ban kia sai r ! vì trừ VT thì phải trừ VP chứ ? sao lại trừ VT mà cộng VP ?
\(xy+3x-2y=11\)
\(=>x.\left(y+3\right)-2.\left(y+3\right)=5\)
\(=>\left(x-2\right).\left(y+3\right)=5\)
\(Do:x;y\inℤ=>x-2;y+3\inℤ\)
\(=>x-2;y+3\inƯ\left(5\right)\)
Nên ta có bảng sau :
x-2 | 1 | 5 | -1 | -5 |
y+3 | 5 | 1 | -5 | -1 |
x | 3 | 7 | 1 | -3 |
y | 2 | -2 | -8 | -4 |
TA có:
\(2x-5y+5xy=9\)
\(\Rightarrow2x-5y\left(1-x\right)=9\)
\(\Rightarrow2-\left[2x-5y\left(1-x\right)\right]=2-9\)
\(\Rightarrow2-2x+5y\left(1-x\right)=-7\)
\(\Rightarrow2\left(1-x\right)+5y\left(1-x\right)=-7\)
\(\Rightarrow\left(2+5y\right)\left(1-x\right)=-7\)
\(\Rightarrow\left(2+5y\right);\left(1-x\right)\in U\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng chọn gt sau:
\(2+5y\) | -7 | -1 | 1 | 7 |
\(1-x\) | 1 | 7 | -7 | -1 |
\(y\) | -9/5 | -3/5 | -1/5 | 1 |
\(x\) | 0 | 6 | 8 | 2 |
KL | Loại | Loại | Loại | Chọn |
Vậy \(x=2;y=1\)
\(xy-2x+y=1\)
\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-1\)
\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-1\)
Ta có bảng sau:
\(x+1\) | 1 | -1 |
\(y-2\) | -1 | 1 |
\(x\) | 0 | -2 |
\(y\) | 1 | 3 |
Vậy ta tìm được các cặp số \(\left(0;1\right);\left(-2;3\right)\) thỏa yêu cầu bài toán.
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
<=>(x-5)y+2x-5=0
=>(x-5)y+2x-0-5=0
<=>x-5=0
=>x=5
<=>y+2=0
=>y=-2
vay x=5;y=-2
Ta có : xy + 2x - 5y - 5 = 0
=> x (y + 2) - 5y - 5 = 0
=> x (y + 2) - 5y - 10 = -5
=> x (y + 2) - 5 (y + 2) = -5
=> (x - 5) (y + 2) = -5
Xét các trường hợp xảy ra (tự làm nhé ^^)
\(xy+2x-5y=13\\ \Rightarrow x\left(y+2\right)-5y-10=3\\ \Rightarrow x\left(y+2\right)-5\left(y+2\right)=3\\ \Rightarrow\left(x-5\right)\left(y+2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)
Vậy \(\left(x;y\right)=\left(8;-1\right);\left(6;1\right);\left(2;-3\right);\left(4;-5\right)\)