K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án:

ˆBKC=110oBKC^=110o

Giải thích các bước giải:

a) Ta có:

KK đối xứng với HH qua BCBC

⇒BC⇒BC là trung trực của HKHK

⇒BH=BK;CH=CK⇒BH=BK;CH=CK

Xét ΔBHC∆BHC và ΔBKC∆BKC có:

BH=BK(cmt)BH=BK(cmt)

CH=CK(cmt)CH=CK(cmt)

BC:BC: cạnh chung

Do đó ΔBHC=ΔBKC(c.c.c)∆BHC=∆BKC(c.c.c)

b) Ta có:

ˆBHK=ˆBAH+ˆABHBHK^=BAH^+ABH^ (góc ngoài của ΔABH∆ABH)

ˆCHK=ˆCAH+ˆACHCHK^=CAH^+ACH^ (góc ngoài của ΔACH∆ACH)

⇒ˆBHC=ˆBHK+ˆCHK⇒BHC^=BHK^+CHK^

=ˆBAH+ˆABH+ˆCAH+ˆACH=BAH^+ABH^+CAH^+ACH^

=ˆBAC+ˆABH+ˆACH=BAC^+ABH^+ACH^

Ta lại có:

ˆBAC+ˆABH=90oBAC^+ABH^=90o (BH⊥AC)(BH⊥AC)

ˆBAC+ˆACH=90oBAC^+ACH^=90o (CH⊥AB)(CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o⇒2BAC^+ABH^+ACH^=180o

⇒ˆABH+ˆACH=180o−2ˆBAC⇒ABH^+ACH^=180o−2BAC^

Do đó:

ˆBHC=ˆBAC+180o−2ˆBAC=180o−ˆBAC=180o−70o=110oBHC^=BAC^+180o−2BAC^=180o−BAC^=180o−70o=110o

Mặt khác:

ˆBHC=ˆBKC(ΔBHC=ΔBKC)BHC^=BKC^(∆BHC=∆BKC)

⇒ˆBKC=110o

28 tháng 11 2021

 

a) Ta có:

 

K đối xứng với H qua BC

⇒ BC là trung trực của HK

⇒ BH=BK; CH=CK

Xét ΔBHC và ΔBKC có:

BH=BK (cmt)

CH=CK (cmt)

BC: cạnh chung

Do đó ΔBHC = ΔBKC(c.c.c)

b) Ta có:

ˆBHK = ˆBAH + ˆABH (góc ngoài của ΔABH)

ˆCHK = ˆCAH+ ˆACH (góc ngoài của ΔACH)

⇒ ˆBHC = ˆBHK + ˆCHK

= ˆBAH + ˆABH + ˆCAH + ˆACH

= ˆBAC + ˆABH + ˆACH

Ta lại có:

ˆBAC+ˆABH = 90o (BH⊥AC)

ˆBAC+ˆACH = 90o (CH⊥AB)

⇒2ˆBAC+ˆABH+ˆACH=180o

⇒ˆABH+ ˆACH = 180o− 2ˆBAC

Do đó:

ˆBHC =ˆBAC+ 180o− 2ˆBAC= 180o− ˆBAC= 180o−70o = 110o

Mặt khác:

ˆBHC = ˆBKC (ΔBHC = ΔBKC)

⇒ˆBKC=110

a: Ta có: H và K đối xứng nhau qua BC

nên BC là đường trung trực của HK

Suy ra: BH=BK và CH=CK

Xét ΔBHC và ΔBKC có 

BH=BK

BC chung

HC=KC

Do đó: ΔBHC=ΔBKC

31 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có K là điểm đối xứng của H qua tâm M nên MK = MH

Xét tứ giác BHCK, ta có:

BM = MC (gt)

MK = MH (chứng minh trên)

Suy ra: Tứ giác BHCK là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Suy ra: KB // CH, KC // BH

Ta có: CH ⊥ AB (gt)

Suy ra: KB ⊥ AB nên ∠ (KBA) = 90 0

Ta có: BH ⊥ AC (gt)

Suy ra: CK ⊥ AC nên  ∠ (KCA) =  90 0

30 tháng 6 2017

Đối xứng tâm

6 tháng 7 2021

Xet tứ giác BHCK có

MH=MK; MB=MC => BHCK là hình bình hành (Tứ giác có các cặp cạnh đối cắt nhau tại trung điểm mỗi đường là hbh)

=> CK//BH mà BH vuông góc với AC => CK vuông góc với AC => \(\widehat{ACK}=90^o\)

=> BK//CH mà CH vuông góc với AB => BK vuông góc với AB => \(\widehat{ABK}=90^o\)