Cho tam giác ABC có diện tích bằng 60. E, F là hai điểm thuộc cạnh BC sao
cho BE = EF = FC. D là trung điểm AC. BD cắt AE, AF lần lượt tại G, H. Tính diện
tích tứ giác AGFD.
mn giúp mk với, mk đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ke DG, la duong trung binh cua tam giac ABC,=1/2BC
AD/AB=AG/AC=DG/BC=1/2
=>tam giac ADG dong dang voi tam giac ABC
=> Stam giac ADG/Stam giac ABC=(1/2)^2=1/4
=>StamgiacADG=84*/4=21 (1)
kẻ đường cao AH giao DG tại T , AT/AH=1/2
ta co Stamgiac ABC =1/2BC*AH
=>BC*AH=168
ma Shinh thang DGFE =(EF+DG)*TH
<=>5/24BC*AH (EF=1/3BC;DG=1/2BC;TH=1/2AH)
<=>35 (2)
Vay Sda giac ADEFG=Stam giacADG+Shinh thang DEFG=21(1)+35(2)=56
Kẻ AE,AF . Ta có :
SABE = SAFC = \(\frac{S_{ABC}}{3}\)= \(\frac{84cm^2}{3}\)= 28 cm2 vì chúng có chung đường cao hạ từ A và có đáy BE = FC = \(\frac{BC}{3}\) . SDBE = \(\frac{S_{ABE}}{2}\)= \(\frac{28cm^2}{2}\)= 14 cm2 vì chúng có chung đường cao hạ từ E và có đáy DB = \(\frac{AB}{2}\).
SGFC = \(\frac{S_{AFC}}{2}\)= \(\frac{28cm^2}{2}\)= 14 cm2 vì chúng có chung đường cao hạ từ F và có đáy GC = \(\frac{AC}{2}\)
=> SADEFG = SABC - SDBE - SGFC = 84 - 14 - 14 = 56 (cm2)
Câu b: Xet tg vuông AEH và tg vuông ABC có
^BAH = ^ACB (cùng phụ với ^ABC)
=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)
\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)
Câu c:
Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
=> tg AMC cân tại M => ^MAC = ^ACB mà ^BAH = ^ACB (cmt) => ^MAC = ^BAH (1)
Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)
Gọi giao của AH với EF là O xét tg AOF có
AH=EF (hai đường chéo HCN = nhau)
O là trung điểm của AH vào EF
=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)
Từ (2) và (3) => ^AFE = ^ABC (4)
Mà ^ABC + ^ACB = 90 (5)
Từ (1) (4) (5) => ^MAC + ^AFE = 90
Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K