Cho x và y TL với 3 và 4;y và z TLN với 5 và -2.biết \(6x^2+y^2-z^2=-30\).Tìm GTLN của biểu thức \(M=x^3+y^2-z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có 1 số câu nhìu số có thể điền lắm, mik chỉ vd 1 cái đc ko bạn
a) 26172
b) 4626
c) 56772
d) 2827170
mik xong đầu, k nha, ai k mik mik k lại
x và y tỉ lệ thuận với 3 và 5 \(\Rightarrow\frac{x}{3}=\frac{y}{5}\) (1)
y và z tỉ lệ thuận với 4 và 5 \(\Rightarrow\frac{y}{4}=\frac{z}{5}\) (2)
Từ (1);(2) suy ra: \(\frac{x}{12}=\frac{y}{20}=\frac{z}{25}=\frac{x+y+z}{12+20+25}=\frac{456}{57}=8\)
\(\Rightarrow\hept{\begin{cases}x=8.12=96\\y=8.20=160\\z=8.25=200\end{cases}}\)
Vậy ...
ta có : \(\frac{x}{3}\)= \(\frac{y}{5}\); \(\frac{y}{4}\)=\(\frac{z}{5}\)
=> \(\frac{x}{12}\)=\(\frac{y}{20}\);\(\frac{y}{20}\)=\(\frac{z}{25}\)
=> \(\frac{x}{12}\)= \(\frac{y}{20}\)= \(\frac{z}{25}\)
áp dụng tính chất của dãy tỉ số bằng nhau , ta có
\(\frac{x}{12}\)= \(\frac{y}{20}\) = \(\frac{z}{25}\)= \(\frac{x+y+z}{12+20+25}\)=\(\frac{456}{57}\)= 8
=> x = 12 x 8= 96
y = 20 x 8 =160
z = 25 x8 = 200