Cho tam giác ABC có góc B = 25 độ, góc C = 35 độ. Phân giác góc BAC cắt cạnh BC tại M. Qua điểm M kẻ đường thẳng song song với đường thẳng AB cắt cạnh AC tại N
1) Tính số đo các góc BAC và góc AMB.
2) Tính số đo các góc của tam giác MNC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △ABC vuông tại A có: ABC + BCA = 90o (tổng 2 góc nhọn trong tam giác)
=> 35o + BCA = 90o
=> BCA = 55o
Vì d ⊥ AB => NMB = 90o
Xét △NMB có MNC là góc ngoài tại đỉnh N
=> MNC = NMB + MBN
=> MNC = 90o + 35o
=> MNC = 125o
b, Vì IN // AB
=> CNI = CBA (2 góc đồng vị)
Mà CBA = 35o
=> CNI = 35o
a)Xét tam giác AHB và tam giác AHE ( đều vuông tại H )
AH là cạnh chung
\(\widehat{BAH}=\widehat{HAE}\)(Vì AD là tia phân giác)
\(\Rightarrow\Delta AHB=\Delta AHE\)(cạnh góc vuông và góc nhọn kề cạnh ấy)
b)Vì AH vừa là tia phân giác vừa là tia vuông góc
\(\Rightarrow\Delta ABE\) là tam giác cân mà lại có góc BAE bằng 600
\(\Rightarrow\Delta ABE\) là tam giác đều\(\Rightarrow\)AH cũng là đường trung tuyến \(\Rightarrow\)BH=HE(1)
Vì KH//AB\(\Rightarrow\widehat{BAE}=\widehat{HKE};\widehat{KHE}=\widehat{ABE}\)
Mà góc KEH chung
\(\Rightarrow\Delta KHE\) là tam giác đều
\(\Rightarrow KH=HE\left(2\right)\)
Từ (1) và (2) suy ra:KH=HB=HE
Theo định lý nếu trong tam giác cạnh đối diện với cạnh huyền bằng nửa cạnh huyền thì tam giác đó vuông
\(\Rightarrow\Delta BKE\) vuông tại K
\(\Rightarrow\widehat{BKE}=90^0\)