Cho tứ giác ABCD có AD=BC và AB<CD. M,N,P,Q lần lượt là trung điểm của các cạnh AB,CD,BD,AC.
a) chứng minh tứ giác MPNQ là hình bình hành
b) hai cạnh DA và CB kéo dài cắt nhau tại G kẻ tia phân giác Gx của góc AGB .Chứng minh Gx // MN
c) tứ giác ABCD cần thêm điều kiện gì để tứ giác MPNQ là hình vuông? chứng minh
* Hướng dẫn câu b:
Gọi I là giao điểm của Gx và PQ. Kéo dài PQ cắt hai cạnh AD và BC theo thứ tự là E và F.
Góc MPQ = góc GEF (so le trong do MP // AD)
Góc MQP = góc GFE (so le trong do MQ // BC)
góc MPQ = góc MQP (tam giác MPQ cân do MP = MQ)
=> góc GEF = góc GEF -> tam giác GEF cân tại G
mà GI là phân giác của góc G -> GI vuông góc với EF
-> Gx vuông góc với PQ -> Gx // MN (MN vuông góc với PQ do hình thoi có 2 đường chéo vuông góc).
Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …
Ví dụ :
B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}
Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.