K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2022

1/nối AC 

Do AB//CD=>BAC=ACD(so le trong)

Do AD//BC=>ACB=DAC(so le trong)

Xét ∆ABC và ∆ACD

ACB=DAC(chứng minh trên)

BAC=DAC(chứng minh trên)

AC chung

Vậy ∆ABC=∆CDA(g.c.g)=>AB=DC(cặp cạnh tương ứng)

                                        AD=BC(cặp cạnh tương ứng)

                                        loading...  

 

 

 

b: Xét tứ giác ABCD có 

AB=CD

AD=BC

Do đó: ABCD là hình bình hành

Suy ra: AB//CD;AD//BC

10 tháng 1 2018

7 tháng 9 2017

Chứng minh rằng AK=KC,BI=ID 
vì FE là đường trung bình hình thang nên FE//AB//CD 
E, F là trung điểm của AD và BC nên AK=KC 
BI=ID 
( trong tam giác đường thẳng qua trung điểm của 1 cạnh, // với cạnh thứ 2 thì qua trung điểm cạnh thứ 3) 

7 tháng 9 2017

Xét t/g ABC và t/g CDA có :

AC cạnh chung

AB = CD ( gt )

\(\widehat{A1}=\widehat{C1}\)( slt , AB // CD )

\(\Rightarrow\)t/g ABC = t/g CDA ( c-g-c )

\(\Rightarrow\)BC = AD

\(\widehat{A2}=\widehat{C2}\) và 2 góc này ở vị trí slt

\(\Rightarrow\)BC // AD

16 tháng 2 2022

a) \(AB^2+CD^2=OA^2+OB^2+OC^2+OD^2=\left(OA^2+OD^2\right)+\left(OB^2+OC^2\right)=AD^2+BC^2\)b) -Áp dụng định lí:

Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì bằng 1 nửa cạnh huyền.

\(OM+ON+OP+OQ=\dfrac{1}{2}AB+\dfrac{1}{2}BC+\dfrac{1}{2}CD+\dfrac{1}{2}DA=\dfrac{1}{2}\left(AB+BC+CD+DA\right)\)

1: Ta có:ABCD là hình chữ nhật

nên AB=CD;AD=BC

2: Xét tứ giác ABCD có 

AB=CD

AD=BC

Do đó: ABCD là hình bình hành

Xét ΔADE và ΔCBF có 

\(\widehat{D}=\widehat{B}\)

AD=CB

\(\widehat{DAE}=\widehat{BCF}\)

Do đó: ΔADE=ΔCBF

Suy ra: \(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{AEC}=\widehat{CFA}\)

Xét tứ giác AECF có

\(\widehat{AEC}=\widehat{CFA}\)

\(\widehat{FAE}=\widehat{FCE}\)

Do đó: AECF là hình bình hành

Suy ra: AE//CF