K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc DIC=180-50-30=100 độ

=>góc AIB=100 độ

góc IAD=180-80-30=70 độ

góc IBC=100-20=80 độ

Đến đây mình thua rồi, xin lỗi bạn nhiều nha, nhưng hình như đề này chưa đủ dữ kiện để cm ΔABI cân đâu ạ

30 tháng 3 2023

Cảm ơn bạn đã góp ý ạ

18 tháng 4 2022

-Bài hình chẳng ai phụ trách giùm mình hết :v (đặc biệt là hình nâng cao).

-Mình cũng xin lỗi vi tối mới làm đc cho bạn nhé.

-Gọi E là giao của AD và BC.

\(\widehat{BAE}=180^0-\widehat{BAD}=\widehat{BCD}\)

\(\Rightarrow\)△ABE∼△CDE (g-g).

\(\Rightarrow\dfrac{AE}{CE}=\dfrac{BE}{DE}\Rightarrow\dfrac{AE}{BE}=\dfrac{CE}{DE}\Rightarrow\)△EAC∼△EBD (c-g-c).

\(\Rightarrow\widehat{ICB}=\widehat{IDA}\Rightarrow\)△IBC∼△IAD (g-g)

\(\Rightarrow\dfrac{IB}{IA}=\dfrac{IC}{ID}\Rightarrow\dfrac{IB}{IC}=\dfrac{IA}{ID}\Rightarrow\)△AIB∼△DIC (c-g-c)

\(\Rightarrow\widehat{IAM}=\widehat{IDN};\dfrac{IA}{ID}=\dfrac{AB}{DC}\Rightarrow\dfrac{IA}{ID}=\dfrac{MA}{ND}\Rightarrow\dfrac{IA}{MA}=\dfrac{ID}{ND}\)

\(\Rightarrow\)△AIM∼△DIN (c-g-c) \(\Rightarrow\widehat{AIM}=\widehat{DIN}\)

 

19 tháng 4 2022

Em cám  ơn thầy nhiều lắm ạ!
Em đã hiểu bài rồi thầy ạ! Trân trọng sự giúp đỡ của thầy ạ!

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

28 tháng 1 2019

A C B D O M S T L K E F

Nhận xét: Tứ giác ABCD nội tiếp đường tròn đường kính AC vì ^ABC=^CDA=900. Gọi tâm của đường tròn này là O. Khi đó thì O chính là trung điểm đoạn AC. Ta thấy M là 1 điểm chung của (S) và (T), đồng thời là trung điểm BD nên M nằm trên trung trực BD. Gọi giao điểm thứ hai của (S) và (T) là L. Ta đi chứng minh L cũng nằm trên trung trực BD. Thật vậy:

Từ M kẻ MK vuông góc với đường thẳng ST. Gọi E,F lần lượt là hình chiếu của S,T lên MA,MC.

Khi đó các tứ giác KSEM, KTMS nội tiếp => ^EKF = ^MKE + ^MKF = ^MSE + ^MTF = (^ASM + ^CTM)/2

Ta thấy AC là tiếp tuyến chung của (S) và (T) nên ^MAC = ^ASM/2; ^MCA = ^CTM/2

Từ đó: ^EKF = ^MCA + ^MAC = ^EOA + ^FOC (Chú ý tứ giác MEOF là hbh) = 1800 - ^EOF

Suy ra tứ giác KEOF nội tiếp => ^EKO = ^EFO = ^MAC = ^MSE (=^ASM/2) = ^EKM

Mà M và O nằm cùng phía so với EK nên tia KM,KO trùng nhau hay O,M,K thẳng hàng 

Mặt khác: (S) và (T) cắt nhau tại M và L nên ML vuông góc ST. Do MK vuông góc ST nên M,K,L thẳng hàng

Vì vậy 4 điểm O,M,K,L thẳng hàng. Lại có OM là trung trực của BD => ML cũng là trung trực BD

Hay 2 giao điểm của (S) và (T) cùng nằm trên đường trung trực của BD (đpcm).

23 tháng 3 2016

A B C D E H I F a b c

23 tháng 3 2016

Đặt \(\overrightarrow{DA}=\overrightarrow{a},\overrightarrow{DB}=\overrightarrow{b},\overrightarrow{DC}=\overrightarrow{c}\) và \(\left|\overrightarrow{a}\right|=\overrightarrow{a},\left|\overrightarrow{b}\right|=\overrightarrow{b},\left|\overrightarrow{c}\right|=\overrightarrow{c}\)

Đặt tiếp \(\widehat{BDC}=\alpha,\widehat{CDA}=\beta,\widehat{ADB}=\gamma\)

Từ giả thiết suy ra EIHF là hình bình hành. Nhưng EH = FI nên đó là hình chữ nhật

Suy ra : \(EF\perp EI\Rightarrow\overrightarrow{AB}.\overrightarrow{DC}=0\)

                             \(\Rightarrow\left(\overrightarrow{b}-\overrightarrow{a}\right).\overrightarrow{c}=0\)

                             \(\Rightarrow\overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}\) (1)

Hoàn toàn tương tự cũng được 

 \(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}\) (2)

Từ (1) và (2) suy ra 

\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}\)

\(\Leftrightarrow a.b\cos\gamma=b.c\cos\alpha=c.a\cos\beta\)

\(\Leftrightarrow\frac{a}{\cos\alpha}=\frac{b}{\cos\beta}=\frac{c}{\cos\gamma}\)

=> Điều cần chứng minh