Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi L là trung điểm của đoạn thẳng OF. Ta thấy phép đối xứng qua đường thẳng EH biến hình thang AEJK thành hình thang BELF, phép tịnh tiến theo vectơ BF biến hình thang BELF thành hình thang FOIC. Như vậy phép dời hình có được bằng cách thực hiện liên tiếp phép biến hình trên, sẽ biến hình thang AEJK thành hình thang FOIC. Do đó hai hình thang AEJK và FOIC bằng nhau.
Gọi L là trung điểm của đoạn thẳng OF.
Ta thấy phép đối xứng qua đường thẳng EH biến hình thang AEJK thành hình thang BELF, phép tịnh tiến theo vectơ BF biến hình thang BELF thành hình thang FOIC. Như vậy phép dời hình có được bằng cách thực hiện liên tiếp phép biến hình trên, sẽ biến hình thang AEJK thành hình thang FOIC. Do đó hai hình thang AEJK và FOIC bằng nhau.
a: Gọi E là trung điểm của AB
ΔABC đều nên CE vuông góc AB
ΔABD đều nên DE vuông góc AB
=>AB vuông góc (CDE)
=>AB vuông góc CD
b: Xét ΔCAB có CN/CB=CM/CA
nên MN//AB và MN=1/2AB
Xét ΔDAB có DQ/DA=DP/DB
nên PQ//AB và PQ/AB=DQ/DA=1/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔADC có AQ/AD=AM/AC
nên QM//DC
=>QM vuông góc AB
=>QM vuông góc QP
=>MNPQ là hình chữ nhật
Gọi L là trung điểm của OF.
+ Vì EO là đường trung trực của các đoạn thẳng AB; KF; JL
⇒ B = ĐEO (A); F = ĐEO (K) ; L = ĐEO (J); E = ĐEO (E)
⇒ Hình thang BFLE là ảnh của hình thang AKJE qua phép đối xứng trục EO.
⇒ Hai hình thang BFLE và AKJE bằng nhau (1)
⇒ Hình thang FCIO là ảnh của hình thang BFLE qua phép tịnh tiến theo
⇒ Hai hình thang FCIO và BFLE bằng nhau (2)
Từ (1) và (2) ⇒ hai hình thang FCIO và AKJE bằng nhau.
Đặt \(\overrightarrow{DA}=\overrightarrow{a},\overrightarrow{DB}=\overrightarrow{b},\overrightarrow{DC}=\overrightarrow{c}\) và \(\left|\overrightarrow{a}\right|=\overrightarrow{a},\left|\overrightarrow{b}\right|=\overrightarrow{b},\left|\overrightarrow{c}\right|=\overrightarrow{c}\)
Đặt tiếp \(\widehat{BDC}=\alpha,\widehat{CDA}=\beta,\widehat{ADB}=\gamma\)
Từ giả thiết suy ra EIHF là hình bình hành. Nhưng EH = FI nên đó là hình chữ nhật
Suy ra : \(EF\perp EI\Rightarrow\overrightarrow{AB}.\overrightarrow{DC}=0\)
\(\Rightarrow\left(\overrightarrow{b}-\overrightarrow{a}\right).\overrightarrow{c}=0\)
\(\Rightarrow\overrightarrow{a}.\overrightarrow{c}=\overrightarrow{b}.\overrightarrow{c}\) (1)
Hoàn toàn tương tự cũng được
\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}\) (2)
Từ (1) và (2) suy ra
\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}\)
\(\Leftrightarrow a.b\cos\gamma=b.c\cos\alpha=c.a\cos\beta\)
\(\Leftrightarrow\frac{a}{\cos\alpha}=\frac{b}{\cos\beta}=\frac{c}{\cos\gamma}\)
=> Điều cần chứng minh