Chứng minh đẳng thức
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}=\dfrac{32}{1-x^{32}}\)
Các bạn giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
98775 - 32 x 85
=98775 -2720
=96055
67500 - 24 x 236
= 67500 -5664
=61836
568 + 101598 : 287
= 568 +354
=922
6875 + 980 -180
=7855 -180
=7675
\(\dfrac{2}{5}+\dfrac{3}{10}-\dfrac{1}{2}\)
\(=\dfrac{7}{10}-\dfrac{1}{2}\)
= \(\dfrac{1}{5}\)
\(\dfrac{8}{11}+\dfrac{8}{33}x\dfrac{3}{4}\)
\(=\dfrac{8}{11}+\dfrac{2}{11}\)
\(=\dfrac{10}{11}\)
\(\dfrac{7}{9}x\dfrac{3}{14}:\dfrac{5}{8}\)
\(=\dfrac{1}{6}:\dfrac{5}{8}\)
\(=\dfrac{1}{6}x\dfrac{8}{5}\)
\(=\dfrac{8}{30}\)
\(=\dfrac{4}{15}\)
\(\dfrac{5}{12}-\dfrac{7}{32}:\dfrac{21}{16}\)
\(=\dfrac{5}{12}-\dfrac{7}{32}x\dfrac{16}{21}\)
\(=\dfrac{5}{12}-\dfrac{1}{6}\)
\(=\dfrac{5}{12}-\dfrac{2}{12}\)
\(=\dfrac{3}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{x-1}-\dfrac{1}{x+1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{x+1-x+1}{x^2-1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{2}{x^2-1}-\dfrac{2}{x^2+1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{2\left(x^2+1-x^2+1\right)}{x^4-1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{4}{x^4-1}-\dfrac{4}{x^4+1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{4\left(x^4+1-x^4+1\right)}{x^8-1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{8}{x^8-1}-\dfrac{8}{x^8+1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{8\left(x^8+1-x^8+1\right)}{x^{16}-1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{16}{x^{16}-1}-\dfrac{16}{x^{16}+1}\)
\(=\dfrac{16\left(x^{16}+1-x^{16}+1\right)}{x^{32}-1}\)
\(=\dfrac{32}{x^{32}-1}\)
\(A=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(A=\left(\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1+x\right)\left(1-x\right)}\right)+...+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
Tiếp tục các bước như ở dòng 2 và 3 ta có :
\(A=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(A=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1+x^{16}\right)\left(1-x^{16}\right)}\)
\(A=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}\)
\(A=\dfrac{32}{1-x^{32}}\)
\(=\dfrac{1}{x+1}-\dfrac{8}{\left(x+1\right)\left(x-4\right)}=\dfrac{x-4-8}{\left(x+1\right)\left(x-4\right)}=\dfrac{x-12}{\left(x+1\right)\left(x-4\right)}=\dfrac{-11}{2\cdot\left(-3\right)}=\dfrac{11}{6}\)
\(\Leftrightarrow\dfrac{7x-8}{32}-\dfrac{2\left(5-x\right)}{32}>\dfrac{16\left(x+9\right)}{32}+\dfrac{4}{32}\)
\(\Leftrightarrow7x-8-2\left(5-x\right)>16\left(x+9\right)+4\)
\(\Leftrightarrow7x-8-10+2x>16x+148\)
\(\Leftrightarrow-7x>166\)
\(\Rightarrow x< -\dfrac{166}{7}\)
\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)
\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{32}{1-x^{32}}\)
Đề sai nha bạn mình sửa luôn
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x}{\left(1-x\right)\left(1+x\right)}+\dfrac{1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2\left(1+x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{\left(1-x^2\right)\left(1+x^2\right)}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4\left(1+x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{\left(1-x^4\right)\left(1+x^4\right)}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8\left(1+x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{\left(1-x^8\right)\left(1+x^8\right)}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16\left(1+x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}+\dfrac{16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{\left(1-x^{16}\right)\left(1+x^{16}\right)}\)
\(=\dfrac{32}{1-x^{32}}=VP\left(đpcm\right)\)
cảm ơn bạn nha