Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)
\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=\dfrac{4}{105}\)
\(\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)
\(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\dfrac{x+8-x}{x\left(x+8\right)}=\dfrac{8}{105}\)
\(\dfrac{8}{x.\left(x+8\right)}=\dfrac{8}{105}\)
\(\Rightarrow x\left(x+8\right)=105\)
\(x^2+8x-105=0\)
\(\left(x-7\right)\left(x+15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)
\(\dfrac{1}{x^2+2x}+\dfrac{1}{x^2+6x+8}+\dfrac{1}{x^2+10x+24}+\dfrac{1}{x^2+14x+48}=\dfrac{4}{105}\)
\(\Leftrightarrow\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow\left(\dfrac{1}{x}-\dfrac{1}{x+2}\right)+\left(\dfrac{1}{x+2}-\dfrac{1}{x+4}\right)+\left(\dfrac{1}{x+4}-\dfrac{1}{x+6}\right)+\left(\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{8}{105}\)
\(\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{8}{105}\)
\(\Leftrightarrow x\left(x+8\right)=105\)
\(\Leftrightarrow x^2+8x-105=0\)
\(\Leftrightarrow x^2-7x+15x-105=0\)
\(\Leftrightarrow x\left(x-7\right)+15\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-15\end{matrix}\right.\)
Thử lại ta có nghiệm của phương trình trên là \(x=7\text{v}à\text{x}=15\)
a: \(=\dfrac{4x^3+8x^2-11x+3-\left(x^2-5\right)\left(2x-1\right)-2x^3-5x^2+x+1}{\left(2x-1\right)^3}\)
\(=\dfrac{2x^3+3x^2-10x+4-2x^3+x^2+10x-5}{\left(2x-1\right)^3}\)
\(=\dfrac{4x^2-1}{\left(2x-1\right)^3}=\dfrac{2x+1}{\left(2x-1\right)^2}\)
b: \(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{32}{1+x^{32}}\)
1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)
ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )
\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
TK
https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5
a: \(\Leftrightarrow4x-5=2x-2+x\)
=>4x-5=3x-2
=>x=3(nhận)
b: =>7x-35=3x+6
=>4x=41
hay x=41/4(nhận)
c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)
\(\Leftrightarrow28-6x-12=-9-5x+20\)
=>-6x+16=-5x+11
=>-x=-5
hay x=5(nhận)
d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)
\(\Leftrightarrow4x=16\)
hay x=4(nhận)
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
\(A=\dfrac{2}{x^2+2x}+\dfrac{2}{x^2+6x+8}+\dfrac{2}{x^2+10x+24}+\dfrac{2}{x^2+14x+48}\)
\(A=\dfrac{2}{x\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+4\right)}+\dfrac{2}{\left(x+4\right)\left(x+6\right)}+\dfrac{2}{\left(x+6\right)\left(x+8\right)}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+8}\)
\(A=\dfrac{1}{x}-\dfrac{1}{x+8}=\dfrac{x+8}{x\left(x+8\right)}-\dfrac{x}{\left(x+8\right)}=\dfrac{8}{x\left(x+8\right)}\)
\(B=\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{8}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{16}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(B=\dfrac{32}{1-x^{32}}\)