Tìm số tự nhiên n để n5+1 chia hết cho n3+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow n^5+n^2-n^2+1⋮n^3+1\)
\(\Leftrightarrow-n^3+n⋮n^3+1\)
\(\Leftrightarrow n=1\)
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10
Khai triển n^5 + 1 = (1 + n)( n^4 - n^3 + n^2 - n + 1)
n^3 + 1 = (n + 1)( n^2 - n + 1)
=> n khác -1 để pháp chia có nghĩa
Để n^5 + 1 chia hết cho n^3 + 1 thì:
n^4 - n^3 + n^2 - n + 1 chia hết cho n^2 - n + 1
n^2 ( n² + n + 1) + 1 - n chia hết cho n^2 - n +1
=> 1 - n chia hết cho n² - n + 1 thì pt trên mới xảy ra chia hết
1 - n chia hết cho n² - n + 1
(-n)(1 - n) chia hết cho n² - n + 1
n² - n + 1 - 1 chia hết cho n² - n + 1
Để pt trên chia hết thì 1 chia hết cho n² - n + 1
=> n² - n + 1 = 1 => n = 0;1
n² - n + 1 = -1 => n² - n + 2 = 0 ( vô nghiệm, tự c/m)
Vậy với n = 0;1 thì ...
Ta có:
n5+1 chia hết cho n3+1
Mà: n5+n2 chia hết cho n3+1
=> n2-1 chia hết cho n3+1
Mà: n3+1 chia hết cho n3+1
=> n3+1-n(n2-1) chia hết cho n3+1
=> 1-n chia hết cho n3+1
=>n2-n3 chia hết cho n3+1
=> n3+n2+1 chia hết cho n3+1
=> n2 chia hết cho n3+1
=>n3 chia hết cho n3+1
=> 1 chia hết cho n3+1
=> n=0