Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gợi ý: phân tích 50 n + 2 - 50 n + 1 = 245.10. 50 n .
b) Gợi ý: phân tích n 3 - n = n(n - 1)(n +1).
a.
Đề bài sai, ví dụ \(n=1\) lẻ nhưng \(1^2+4.1+8=13\) ko chia hết cho 8
b.
n lẻ \(\Rightarrow n=2k+1\)
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6
\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48
TK ử đây : https://hoc247.net/hoi-dap/toan-8/chung-minh-n-5-n-chia-het-cho-30-faq417269.html
ta có
\(n^5+1=n^5+n^2-n^2+1=n^2\left(n^3+1\right)-\left(n-1\right)\left(n+1\right)\) chia hết cho \(n^3+1\)
Khi \(\left(n-1\right)\left(n+1\right)\) chia hết cho \(n^3+1=\left(n+1\right)\left(n^2-n+1\right)\)
mà \(n^2-n+1>n-1\Rightarrow\left(n-1\right)\left(n+1\right)< n^3+1\)\(\)
\(\Rightarrow\orbr{\begin{cases}n^3+1=1\\n^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Khai triển n^5 + 1 = (1 + n)( n^4 - n^3 + n^2 - n + 1)
n^3 + 1 = (n + 1)( n^2 - n + 1)
=> n khác -1 để pháp chia có nghĩa
Để n^5 + 1 chia hết cho n^3 + 1 thì:
n^4 - n^3 + n^2 - n + 1 chia hết cho n^2 - n + 1
n^2 ( n² + n + 1) + 1 - n chia hết cho n^2 - n +1
=> 1 - n chia hết cho n² - n + 1 thì pt trên mới xảy ra chia hết
1 - n chia hết cho n² - n + 1
(-n)(1 - n) chia hết cho n² - n + 1
n² - n + 1 - 1 chia hết cho n² - n + 1
Để pt trên chia hết thì 1 chia hết cho n² - n + 1
=> n² - n + 1 = 1 => n = 0;1
n² - n + 1 = -1 => n² - n + 2 = 0 ( vô nghiệm, tự c/m)
Vậy với n = 0;1 thì ...
Ta có:
n5+1 chia hết cho n3+1
Mà: n5+n2 chia hết cho n3+1
=> n2-1 chia hết cho n3+1
Mà: n3+1 chia hết cho n3+1
=> n3+1-n(n2-1) chia hết cho n3+1
=> 1-n chia hết cho n3+1
=>n2-n3 chia hết cho n3+1
=> n3+n2+1 chia hết cho n3+1
=> n2 chia hết cho n3+1
=>n3 chia hết cho n3+1
=> 1 chia hết cho n3+1
=> n=0